Logotipo del repositorio
  • English
  • Español
  • Français
  • Italiano
  • Iniciar sesión
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
Logotipo del repositorio
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Estadísticas
  • English
  • Español
  • Français
  • Italiano
  • Iniciar sesión
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  1. Inicio
  2. Artículos, ponencias, comunicaciones en congresos
  3. Ponencias, comunicaciones, resúmenes de congresos
  4. Cover and land use changes in the dry forest of Tumbes (Peru) using sentinel-2 and google earth engine data
 
  • Details
Options

Cover and land use changes in the dry forest of Tumbes (Peru) using sentinel-2 and google earth engine data

Journal
Environmental Sciences Proceedings
Date Issued
2022-10-21
Author(s)
Barboza Castillo, Elgar
Salazar Coronel, Wilian
Gálvez-Paucar, David
Valqui Valqui, Lamberto
Saravia Navarro, David
Gonzales, Jhony
Aldana, Wiliam
Vásquez Pérez, Héctor Vladimir
Arbizu Berrocal, Carlos Irvin
DOI
https://doi.org/10.3390/IECF2022-13095
Abstract
Dry forests are home to large amounts of biodiversity, are providers of ecosystem services, and control the advance of deserts. However, globally, these ecosystems are being threatened by various factors such as climate change, deforestation, and land use and land cover (LULC). The objective of this study was to identify the dynamics of LULC changes and the factors associated with the transformations of the dry forest in the Tumbes region (Peru) using Google Earth Engine (GEE). For this, the annual collection of Sentinel 2 (S2) satellite images of 2017 and 2021 was analyzed. Six types of LULC were identified, namely urban area (AU), agricultural land (AL), land without or with little vegetation (LW), water body (WB), dense dry forest (DDF), and open dry forest (ODF). Subsequently, we applied the Random Forest (RF) method for the classification. LULC maps reported accuracies greater than 89%. In turn, the rates of DDF and ODF between 2017 and 2021 remained unchanged at around 82%. Likewise, the largest net change occurred in the areas of WB, AL, and UA, at 51, 22, and 21%, respectively. Meanwhile, forest cover reported a loss of 4% (165.09 km2 ) of the total area in the analyzed period (2017–2021). The application of GEE allowed for an evaluation of the changes in forest cover and land use in the dry forest, and from this, it provided important information for the sustainable management of this ecosystem
Subjects

Forest remote sensing...

Random Forest (RF)

Temporal series

Biodiversity

File(s)
No hay miniatura disponible
Name

Barboza_et-al_2022_Forest_google earth.pdf

Size

2.37 MB

Format

Adobe PDF

Checksum

(MD5):d882a7fbaa8f085fe72dcca5b5c7ae9f



INIA Logo

Instituto Nacional de Innovación Agraria 2022
Contacto: pgc@inia.gob.pe

Facebook La Referencia Eurocris
Repositorio Institucional
Alicia La Referencia Eurocris

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Configuración de cookies
  • Política de privacidad
  • Acuerdo de usuario final
  • Enviar Sugerencias