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Abstract: Early assessment of crop development is a key aspect of precision agriculture. Shortening
the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the
usual concerns in agriculture. Early prediction of crop yields can increase profitability for the
farmer’s economy. In this study, we aimed to predict the yield of four maize commercial hybrids
(Dekalb7508, Advanta9313, MH_INIA619 and Exp_05PMLM) using vegetation indices (VIs). A total
of 10 VIs (NDVI, GNDVI, GCI, RVI, NDRE, CIRE, CVI, MCARI, SAVI, and CCCI) were considered for
evaluating crop yield and plant cover at 31, 39, 42, 46 and 51 days after sowing (DAS). A multivariate
analysis was applied using principal component analysis (PCA), linear regression, and r-Pearson
correlation. Highly significant correlations were found between plant cover with VIs at 46 (GNDVI,
GCI, RVI, NDRE, CIRE and CCCI) and 51 DAS (GNDVI, GCI, NDRE, CIRE, CVI, MCARI and CCCI).
The PCA showed clear discrimination of the dates evaluated with VIs at 31, 39 and 51 DAS. The
inclusion of the CIRE and NDRE in the prediction model contributed to estimating the performance,
showing greater precision at 51 DAS. The use of unmanned aerial vehicles (UAVs) to monitor crops
allows us to optimize resources and helps in making timely decisions in agriculture in Peru.

Keywords: vegetation indices; precision farming; hybrid; phenotyping; remote sensing

1. Introduction

World population growth is constant over time, with estimates of 9.7 billion people
by 2050 and 11 billion by 2100 [1]. Therefore, it is imperative to strengthen food security
and increase crop production through the efficient use of resources for its sustainability.
In this sense, maize is one of the most important cereals in the world and a staple food in
many households. It is also a source of animal feed and a fundamental product in the food
industry [2,3]. World production is estimated at 1192 Mt, with the largest producers being
the United States, China, Brazil and Mexico [4].

In the last decade, the use of technologies in agriculture has also increased significantly
through the usage of Geographic Information Systems (GIS), Global Navigation Satellite
Systems (GNSS), remote sensing, UAVs, machinery and other technologies that have
supported precision agriculture [5–7]. The incorporation of these disciplines allows the
collection, processing and analysis of temporal, spatial and individual data, and combines
them with other data for the implementation of adequate solutions in the use of resources,
productivity, quality, profitability and sustainability of agricultural production [8–11].
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A wide range of UAVs and satellite-mounted sensors have been used for phenotyping
studies to obtain aerial images and monitor crop development [12,13]. Landsat and Sentinel-
2 satellites collect images in the visible and near-infrared (NIR) to assess the health of crop
development on a regional and global scale [14–17]. However, the spatial resolution has
not been fine enough to meet the phenotypic measurement needs of various research
projects on crops and in small areas at the level of small agricultural producers [12,18]. For
this reason, the use of UAVs is currently gaining prestige as an integral part of precision
agriculture or agriculture 4.0, guaranteeing successful harvests [19].

On the other hand, UAVs with remote sensors can collect detailed information on the
phenological development of crops through high spatial and temporal resolution images,
which greatly reduces labor and time costs [20–22]. These sensors can acquire bands such
as thermal infrared, RGB band, NIR band and red edge (RE) band [19]. These bands
allow studying biomass growth, nitrogen content, yield, water stress and chlorophyll
measurement in citrus, maize, wheat, soybean and grapevine crops [11,22–27], through the
application of VIs such as the normalized difference vegetation index (NDVI) and other
indices based on reflectance [12].

Accurate estimation of maize yield at the local or regional level contributes to im-
proved food security and the development of more supportive models. [28]. In Peru, the
cultivated area of yellow dent maize during the 2019–2020 season was 237,000 hectares
with a production of 5.0 Mt per hectare (siea.midagri.gob.pe/portal/siea_bi/index.html,
accessed on 11 June 2022). However, in recent years these varieties have become very
susceptible to new climate change conditions [29], making real-time crop monitoring and
supervision very useful in Peru. There is also limited availability of technologies to facil-
itate crop detection, monitoring and analysis as these techniques are in their infancy in
Peru. In this context, the use of UAVs and multispectral sensors are an excellent option
to evaluate and estimate corn production [30], allowing us to prevent crop damage and
increase farmers’ economies. Consequently, in this study we evaluated the performance
of four maize hybrids on the Peruvian coast, calculating VIs from multispectral images
obtained from UAVs.

2. Materials and Methods
2.1. Study Area

The data collection was carried out at the Centro Experimental La Molina (CELM)
of the Instituto Nacional de Innovación Agraria (INIA) (−12◦4′ W, −76◦56′ S) which is
located in the district of La Molina, province and department of Lima (Peru), Figure 1.

This area is characterized by a semi-arid climate, presenting an annual rainfall of
5.7 mm year−1 and an average temperature of 17.3 ◦C in 2021 (CELM Automatic Weather
Station, VANTAGE Pro2 Plus Davis, CA, USA). The type of soil is sandy loam with physical
characteristics of electrical conductivity (EC) of 1.59 dS/m, pH of 7.32, field capacity of
14.8%, wilting point of 7.7% and bulk density of 1.54 g/cm3 (INIA-Water, Soil and Foliar
Research Laboratory).

The experimental field consisted of 48 plots with four commercial maize hybrids
(Dekalb7508, Advanta9313, MH_INIA619 and Exp_05PMLM). They have a vegetative
period of approximately 120 days and adapt very well to different regions of the Peruvian
coast. Each plot represented an area of 32.8 m2 (8 m long and 4.1 m wide) with five furrows
spaced 0.9 m apart and between plant bumps at 0.25 m. The season of greater planting
of the crop is carried out in spring-summer. The evaluation and monitoring of the field
experiment began with sowing on 18 January 2021, to end with its harvest on May 31 of the
same year. During the vegetative period, the maximum temperature recorded was 30.4 ◦C
in January, while the minimum was 15 ◦C in June.

A drip irrigation system was used, with a drip flow rate of 3.7 L/h and a distance
between drippers of 0.2 m. Management practices such as weed and pest control were
carried out manually and the use of herbicides was part of the agronomic management of
the field.

siea.midagri.gob.pe/portal/siea_bi/index.html
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Figure 1. Location of the study area the La Molina Experimental Center in Lima (Peru).

2.2. Data Collection

Yield grain data was obtained by manually harvesting the ears from a representative
area of 32.8 m2 in each plot and then expressed as t/ha. The process consisted of weighting
the total maize grains of each plot with 20–25% humidity, and then extracting a 200 g
sample per plot to be dried in an oven at 60 ◦C for an interval of 72 h, reaching grain
moisture of approximately 12–14% to estimate yield per hectare.

Images obtained from the UAV Phantom 4 Pro (https://www.dji.com/phantom-4-
pro?site=brandsite&from=nav, Shenzhen, China, accessed on 22 March 2022) covered
the different stages of maize development. They were collected between 11:00 a.m. and
2:00 p.m. to minimize changes in the solar zenith angle in cloudless weather conditions [31].
Five dates were selected for the acquisition of the images (31, 39, 42, 46 and 51 DAS)
between January and March 2021. The selection of the dates for the acquisition of the
images was made considering the previous stages of flowering and the maximum coverage
of the maize canopy. At these stages, the VIs reached their highest levels and then went
down. The UAV coupled with Parrot Sequoia multispectral camera (Parrot SA, Paris,
France) (Figure 2) was used to acquire the images of the 48 study units at a height of 30 m.

The focal length of the camera was 5 mm with an image shutter speed of 1 s. Each
image was composed of four bands in the wavelength ranges from 530 to 570 nm (Green);
640 to 680 nm (Red); 730 to 740 nm (Red edge); 770 to 810 nm (Near-Infrared), with a spatial
resolution of 1.2 megapixels [32], and the image size was 1280 × 960 pixels. The files were
saved in the Tagged Image File Format (TIFF).

For the acquisition of precise images, a luminosity sensor located in the upper part
of the UAV was used. The flight plan was designed with a 75% overlap between images.
On the other hand, for the georeferencing of the images, seven ground control points
(GCPs) were used, which were measured using a high-precision GNSS and marked with
topographic targets [33].

https://www.dji.com/phantom-4-pro?site=brandsite&from=nav
https://www.dji.com/phantom-4-pro?site=brandsite&from=nav
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2.3. Vegetation Indices Estimation

The multispectral images were acquired using Pix4D Capture (flight plan manage-
ment). Subsequently, images were georeferenced and brightness was corrected using
radiometric calibration and correction in Pix4Dmapper (V4.5.6, Pix4D S.A., Prilly, Switzer-
land), generating the orthomosaic [25]. The radiometric correction improved the quality of
the images since it considered the illumination of the scene and the influence of the sensor.
It was executed in three steps: (1) point cloud creation, (2) digital surface map (DSM) and
(3) orthomosaic creation to calculate the VIs [34,35]. The resulting multispectral image was
RGB (visible) in TIFF format with a high resolution of 2.1 cm/pixel. The VIs were estimated
within the area of maize canopy cover that was previously extracted using spatial mask
extraction processing in ArcGIS 10.5 software. Table 1 shows the indices evaluated during
the five study dates.

Table 1. Vegetation indices applied for maize yield evaluation.

Indices Equation Source

Normalized Difference Vegetation Index (NDVI) NDVI = NIR−Red
NIR+Red [36]

Green Normalized Difference Vegetation Index
(GNDVI) GNDVI = NIR−Green

NIR+Green [37]

Green Chlorophyll Index (GCI) GCI = NIR
Green − 1 [38]

Ratio Vegetation Index (RVI) RVI = NIR
Red [39]

Normalized Difference RedEdge Index (NDRE) NDRE =
NIR−Rededge
NIR+Rededge

[40]

ChlorophyII Index-RedEdge (CIRE) CIRE = NIR
Rededge − 1 [38]

ChlorophyII Vegetation Index (CVI) CVI = NIR∗Red
Green2 [41]

Modified Chlorophyll Absorption Reflectance
Index (MCARI) MACARI =

[(Rededge−Red)−0.2 (Rededge−Green)]∗
(

Rededge
Red

)
(1+0.16)∗(Rededge−Red)

Rededge+Red+0.16

[42]

Soil Adjusted Vegetation Index (SAVI) SAVI = (NIR−Red)(1+L)
NIR+Red+L

[43]

Canopy Chlorophyll Content Index (CCCI) CCCI =
NIR−Rededge
NIR+Rededge

NIR−Red
NIR+Red

[44]
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2.4. Canopy Cover Estimation

The calculation of the canopy cover was made using the image classification, editor
and spatial analysis tools (Spatial Analyst Tools) of the ArcMap software (ArcGIS 10.4.1).
Supervised classification of the mosaics was carried out in three classes (vegetable cover, soil
and shade) [34], obtained in Section 2.3, which allowed determining the maize cover [34].
From these, an output surface map with plant cover was generated, which allowed the
calculating of the percentages of maize cover from the orthomosaics generated for each date.

2.5. Data Analysis and Model Development

Firstly, agronomical yield measurement for each maize hybrid was estimated based
on the weights of dry grain of maize expressed in t/ha. The canopy cover and VIs were
estimated from the multispectral images at 31, 39, 42, 46 and 51 DAS. An analysis of
variance (ANOVA) and Duncan test (alpha = 0.05) means comparisons were performed
among maize hybrids on each date evaluated. With the data over time, box plot graphs
were constructed over the five dates for each variable evaluated in the experiment to
observe the variability. We conducted a Principal Component Analysis (PCA) with R
libraries factoMineR [45], factoextra [46], and ggplot2 [47] to determine the most relevant
index in predicting yield and the variations between each VIs over time. Subsequently,
the r-Pearson correlation was applied to the indices with greater performance precision
using GGally [48] and Hmisc [49] libraries. Finally, the yield means between the four maize
varieties were compared using Duncan’s test with con α = 0.05, using the agricolae [50]
library. These analyzes were performed with the programming software R [51].

3. Results
3.1. Yield for Each Maize Hybrid and Canopy Cover Estimation

Figure S1 shows the results of applying the Duncan test to compare the means of yield per
hybrid and the percentage of canopy cover, according to DAS and VIs. Two groups without
significant differences were identified, the first consisting of Advanta9313 (9.91 ± 2.15 t/ha)
and Dekalb7508 (8.85 ± 1.38 t/ha), and the second MH_INIA619 (6.23 ± 1.51 t/ha) and
Exp_05MLM (5.81 ± 1.21 t/ha) (Figure S1a). The yield varies from 5.81 to 9.91 t/ha. The
hybrids Advanta9313 and Decalb7508 presented the highest yield and the hybrid Exp_05MLM
reported the lowest (Figure S1b). At the level of canopy coverage at 31 DAS, the hy-
brid Exp_05MLM presented greater coverage, followed by Dekalb7508 and MH_INIA619.
Dekalb7508 presented greater canopy coverage at 39 and 46 DAS. However, at 51 DAS the
canopy cover for the four hybrids was similar.

3.2. Vegetation Indices Estimations and Canopy Cover Relationships

The canopy cover according to the DAS is shown in Figure 3a. Greater variability of
canopy cover at 31 DAS is depicted, which improved at 51 DAS. The correlation between
the VIs with the DAS (Figure 3b–k) indicated that the reflectance values for nine indices
increased continuously. Only the MCARI reported a decrease at 42 DAS. The GNDVI, GCI,
RVI, NDRE, CIRE and CCCI indices showed the high significance of plant cover at 46 DAS
and the GNDVI, GCI, NDRE, CIRE, CVI, MCARI and CCCI indices at 51 DAS.
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3.3. Development of Prediction Models to Calculate Crop Yields

Figure 4 shows the r-Pearson correlation between DAS, crop yield, canopy cover and
VIs. The highest correlation between crop yield and canopy cover occurs at 39 and 51 DAS
with −0.41 ** and −0.43 **, respectively. At the level of VIs and performance with directly
proportional correlations, the GNDVI (0.42 **) and GCI (0.41 **) indices presented correlations of
medium importance. The NDRE (0.58 ***), CIRE (0.57 ***) and CCCI (0.54 ***) indices reported a
highly significant correlation at 46 DAS (Figure 4d). Likewise, at 51 DAS, the GNDVI (0.55 ***),
GCI (0.57 ***), NDRE (0.78 ***), CIRE (0.78 ***), CVI (0.52 ***) and CCCI (0.64 ***) indices showed
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a very significant correlation. On the other hand, inversely proportional correlations of crop
yield with VI show SAVI (−0.32 *) and MACARI (−0.36 *) at 31 and 51 DAS (Figure 4e).
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The relationship between canopy cover and VIs is shown. The NDVI, MCARI and
SAVI indices reported highly significant correlations for all evaluation days, obtaining
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the maximum values (0.84 ***, 0.84 *** and 0.88 ***, respectively) at 39 DAS. In turn, the
correlation for the GNDVI, GCI, and RVI indices at 51 DAS varies from very significant
to medium importance. However, for the CVI and CCCI indices, the inverse correlation
increases according to the DAS.

The results of the PCA are presented in Figure 5 for the five dates evaluated. There
is a variability of the VI according to the temporality; the greater the distance from the
calculation, the greater the difference between them. For comparison, on days 31, 39 and
51 DAS, there is no group overlap (Figure 5a), indicating clear discrimination of the groups
in this multivariate analysis. However, the opposite occurs at 39, 42 and 46 DAS, where
there is an overlap because they are very close dates that do not allow clear discrimination
of the indices generated on the maize plant cover.
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When performing the PCA for the canopy cover and yield indices at each date of the
generated images (Figure 5b–e), we observe that there is no clear discrimination of groups
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with respect to the maize hybrids evaluated, but at 51 DAS (Figure 5f) two groups are
observed. The maize yield at 51 DAS goes in the same direction as most VIs.

Prediction models were built using multiple linear regression based on indices that pre-
sented significant correlations with a Pearson’s r > 0.54 (NDRE, CIRE and CCCI) (Figure 5).
Two crop yield prediction models were built for 46 and 51 DAS. Models 1 and 2 were built
based on the NDRE, CIRE and CCCI indices at 46 and 51 DAS (Figure 6). Model 1 reported
a positive relationship between yield and indices with a coefficient of determination (R2)
of 0.34 (Figure 6a). At the indices level, these values decrease (Figure 6b–d) except for the
NDRE which is the highest R2 = 0.34. Model 2 presented a positive relationship with an R2

of 0.62, higher than model 1. Likewise, at the indices level, NDRE and CIRE presented a
highly positive relationship with R2 0.61 (Figure 6g,h).
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4. Discussion

This study predicted maize grain yield for phenological stages using VIs, obtained
from UAV multispectral images. One of the advantages of using UAVs in the monitoring
of experimental plots or crops is that they can be controlled remotely and generates lower
maintenance costs and acquisition of high-resolution images [52]. Hybrid Advanta9313
presented the highest yield (9.91 t/ha) at 51 DAS, a value higher than the national average
of 4.77 t/ha [53] and similar to those reported by Gavilánez-Luna & Gómez-Vargas [54].
This superiority in yield performance could be due to its wide adaptability to the maize
areas of Peru and its good production stability [55].

For the estimation of canopy cover in the experimental plot, a total of 10 VIs were
selected (Table 1). VIs were calculated using multispectral reflectance measurements at
visible and near-infrared wavelengths. This range of lengths has been used in different
precision agriculture applications such as plant counting, growth monitoring, phenology
and chlorophyll measurement. [24,31,52,56,57]. At the VIs level, it is observed that at 46
and 51 DAS, there are highly significant correlations, since, at this stage, the chlorophyll
content also increases significantly, as does the canopy cover. In nine indices, values increased
cumulatively with the advancing growing season. Only the MCARI showed a decrease at
42 DAS. The NDVI values ranged from 0.75 to 0.83 throughout the evaluation, unlike the
GNDVI that went from 0.65 to 0.75, the SAVI being very similar to the NDVI on the first date
evaluated. The average values were 0.4 and for the 51 DAS, they oscillated around 0.70.

The models for maize grain yield predictions were based on indices obtained from
UAV multispectral images measured on five dates. They were generated from linear
regression, demonstrating the feasibility of maize yield prediction using only VIs. In this
way, applying metrics through the Pearson correlation helps to determine the most suitable
indices to build the prediction models [58]. The feasibility of performance explained by
the models ranged between R2 = 0.34 and 0.64 for the 46 and 51 DAS, respectively. The
best regression for grain prediction (R2 = 0.64) was obtained with a combination of three
indices (NDRE, CIRE and CCCI) at 51 DAS in the flowering stage. Indices NDRE and CIRE
presented the highest R2 (0.61) with the following models: 92.454 × NDRE-26.393 and
17.752 × CIRE-3.544. On the other hand, the R2 values are lower than those obtained by
Barzin et al. [59], who used the index OSAVI y SCCCI. At the same time, Sunoj et al. [60]
used exponential and nonlinear NDVI models for yield prediction and obtained R2 values
greater than 0.90. The lower correlations in the early stage may be due to the fact that
the physiological characteristics of maize do not yet show significant differences. In other
studies, they used satellite images such as MODIS and Landsat 8, where they found high
performance predictions at 65–75 and 60–62 DAS, respectively [5,26].

The NDVI showed a low correlation (0.15) for yield estimation. However, higher
NDVI values (0.53) have been reported in other studies. This may be due to the location
and range of the electromagnetic spectrum taken by the Parrot Sequoia camera [27]. These
results are also different from those obtained in wheat crops where the NDVI values
fluctuated from 0.40, 0.49 and 0.45, for the early, intermediate and late grain-filling stages
for full irrigation treatment [61]. In another study carried out with Landsat images, the
indices that best-predicted maize crop yield were Enhanced Vegetation Index (EVI), SAVI
and Optimized Soil-Adjusted Vegetation Index (OSAVI), which were different from the
NDVI [62]. Through the use of Landsat-7 ETM+ and Spot 5 images, they found high
correlation values of the NDVI index in the yield of sugarcane, sugar and barley [63,64].

The approach presented in this study can be implemented with different data sets
for different crops. The main advantage of this procedure is that it allowed estimating
maize yield with high precision, using IVs calculated from UAVs multispectral images.
Furthermore, UAVs and multispectral cameras can provide substantial spatial data on crop
yield and quality at a low cost [65]. In addition, they provided the opportunity to monitor
farmers’ plots, supporting the management of the agricultural system and assisting in
decision-making actions.
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5. Conclusions

The use of multispectral sensors assembled in the UAV can generate VIs measurements
that allowed us to compare the performance of maize hybrids. The results indicated a highly
significant correlation between canopy cover and 10 VIs derived from UAV multispectral
images. The performance showed high correlations at 46 DAS with six indices (GNDVI, GCI,
RVI, NDRE, CIRE and CCCI) and at 51 DAS with seven indices (GNDVI, GCI, NDRE, CIRE,
CVI, MCARI and CCCI). Prediction models for performance from multiple correlations at
46 and 51 DAS were similar when three indices or just one were used. The PCA indicated
clear discrimination of the dates evaluated with the VIs at 31, 39 and 51 DAS. The maize
hybrids Dekalb7508 and Advanta9313 presented better performance than MH_INIA619
and Exp_05PMLM. Maize yield showed a high correlation during the reproductive stage
(46 and 51 DAS) with the indices (GNDVI, GCI, RVI, NDRE, CIRE, CVI, MCARI and CCCI).
Consequently, when compared to manual evaluation, VIs will allow timely decisions to be
made when monitoring maize crops, optimizing resources and helping in making timely
decisions in agriculture.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy12112630/s1, Figure S1. Comparison of crop yield and
canopy cover according to maize hybrid. (a) Crop yield of the four maize hybrids with Duncan test
α = 0.05; (b) Canopy cover of the four hybrids at 31, 39, 42, 46 and 51 DAS.
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