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ABSTRACT Here, we report the complete genome sequence of Erwinia sp. strain INIA01,
a bacterium isolated from lesions of Zea mays from northern Peru. This genome possesses
two circular replicons, a 4.2-Mb chromosome, and a 438-kb plasmid.

The genus Erwinia has several plant pathogens; they distinguish themselves by their
great capability to infect and spread, causing huge losses in many crops. Since

these diseases are highly contagious and result in serious losses once introduced, they
are regulated as a quarantine disease (1–4). An outbreak of bacterial rot in maize hec-
tares was intercepted in Chiclayo, Peru (6.72°S, 79.77°W). Plant tissues with symptoms
of soft wet stem rot and nauseous smell were collected, and the surface was cleaned
with sterile distilled water. The tissues were cut under a laminar flow hood using a scal-
pel and serially diluted in peptone-water. The culture was done in nutrient agar plates
for isolation (28°C, 48 h). The strain was characterized by biochemical tests (5, 6).

The strain isolated on nutrient agar was selected for the extraction of its genomic
DNA; we used the E.Z.N.A. bacterial DNA isolation kit (Omega Bio-tek, USA) following the
manufacturer’s protocol. The genomic DNA was subjected to 150-bp paired-end (PE)
Illumina sequencing using the Illumina Nextera DNA Flex library preparation kit. The PE
Illumina library was loaded onto the NovoSeq 6000 instrument for cluster generation
and sequencing by Novogene Co. Ltd. (CA, USA). A total of 9,231,680 paired-end reads
representing ;150� genome coverage was generated. Quality trimming (Phred Q of
.25) was conducted with Trimmomatic v0.36 (7). De novo assembly was performed with
Spades v 3.10.1 (8) with testing of different k-mers (from 23 to 123). SSPACE v2.0 (9) and
GapCloser (10) were used for scaffolding. We used QUAST v.5.2.0 (11) for statistics of
assemblies. The completeness and consistency of the assembled genome were esti-
mated using Benchmarking Universal Single-Copy Orthologs (BUSCO) (12) and CheckM
(13), showing 100% completeness. Extrachromosomal content was identified by rerun-
ning SPAdes on the raw reads with the “plasmid” flag. Plasmids were further visually con-
firmed for circularity using assembly graphs constructed in Bandage v.0.8.1. (14). The
genome sequence consists of 5,702,202 bp (41 scaffolds; N50, 313,858 bp); furthermore, a
scaffold was identified as a plasmid with a size of 438,452 bp. The scaffolds obtained
were further annotated with NCBI Prokaryotic Genome Annotation Pipeline (PGAP) and
as performed using RASTtk v2.0 using default parameters (15–17). A total of 5,062 pro-
tein-coding genes were estimated from assembly. Also, we detected 73 RNAs (2 rRNAs,
64 tRNAs, and 7 noncoding RNAs [ncRNAs]) and 58 pseudogenes (Table 1).

An EzBioCloud BLAST analysis of the 16S rRNA gene sequence of strain INIA01 yielded
the highest identity (99.1%) with the Erwinia sp. strain ELC0701. Based on average nucleo-
tide identity (ANI) with GTDB-Tk v0.3.2 analysis (18, 19), our genome is closely related to
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Erwinia sp. strain Leaf5 (20) with an ANI value of 82.53%. Finally, genome annotation
revealed putative genes encoding pathways for virulence and disease; within this cate-
gory, we identified homologs of lipoprotein YidQ, the heat shock protein A, and protein
YidR and suggest that they play a role in the pathogenicity of strain INIA01.

Data availability. The genome sequence is openly available in GenBank of NCBI
under the accession number JAPDNC01000000000 (https://www.ncbi.nlm.nih.gov/
nuccore/JAPDNC000000000.1/). The associated BioProject, BioSample, and Sequence Read
Archive (SRA) numbers are PRJNA893657, SAMN31430933, and SRX18009592, respectively.
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