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Abstract: In Peru, common bean varieties adapt very well to arid zones, and it is essential to
strengthen their evaluations accurately during their phenological stage by using remote sensors and
UAV. However, this technology has not been widely adopted in the Peruvian agricultural system,
causing a lack of information and precision data on this crop. Here, we predicted the yield of
four beans cultivars by using multispectral images, vegetation indices (VIs) and multiple linear
correlations (with 11 VIs) in 13 different periods of their phenological development. The multispectral
images were analyzed with two methods: (1) a mask of only the crop canopy with supervised
classification constructed with QGIS software; and (2) the grids corresponding to each plot (n = 48)
without classification. The prediction models can be estimated with higher accuracy when bean
plants reached maximum canopy cover (vegetative and reproductive stages), obtaining higher R2

for the c2000 cultivar (0.942) with the CIG, PCB, DVI, EVI and TVI indices with method 2. Similarly,
with five VIs, the camanejo cultivar showed the highest R2 for both methods 1 and 2 (0.89 and 0.837)
in the reproductive stage. The models better predicted the yield in the phenological stages V3–V4
and R6–R8 for all bean cultivars. This work demonstrated the utility of UAV tools and the use of
multispectral images to predict yield before harvest under the Peruvian arid ecosystem.

Keywords: multiple regression; multispectral imaging; NDVI; precision agriculture; remote sensing

1. Introduction

Bean (Phaseolus vulgaris) is a legume that constitutes one of the main sources of food;
it is a rich and economical source of proteins (20% to 25%) and carbohydrates (50% to
60%) for a large portion of consumers worldwide, mainly in developing countries [1]. It
is widely cultivated [2] for its enormous genetic diversity, provides a considerable gene
pool for adaptations to future climatic stresses [1] and will probably play a key role in
ensuring food security for millions people around the world [3]. According to the Food
and Agriculture Organization of the United Nations (FAO), the world population has to
find new solutions to increase food production by 70% by 2050. The cultivated area of
beans in Peru in 2019 was of 75,390 ha, and it amounted to 0.8% of the gross value of
production from agricultural activity [4]. Therefore, improving crops yield represents a
great challenge [5], and under climate change conditions, the quantitative evaluation of
variables that improve yield is becoming a high priority [6]. Among these traits, biomass,
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plant height, chlorophyll content and other variables might be an alternative to manage
available resources and reduce inputs for production (precision agriculture) [7]. However,
crop evaluating techniques must be adapted to different growth stages (phenology) and
should involve a low amount of time and resources.

To carry out photosynthesis, plants absorb part of the light emitted by the sun and
reflect the rest. This reflected light is analyzed by vegetation indices to detect plants and
assess their status. In summary, healthy plants are rich in chlorophyll and reflect more
green and near-infrared (NIR) light than those with stressed or dead leaves [8].

To monitor these crops, UAVs were used, which are tools that allow crop monitoring
and which facilitate non-contact data collection over a crop area, allowing for the character-
ization of spatial–temporal information of the field. They are coupled to remote sensors,
such as multispectral cameras, thus allowing the estimation of different vegetation indices,
providing a faster method to collect field information [9]. Recently, in northern China,
researchers conducted an analysis using UAV images that predicted corn crop yields [10].
Similarly, aerial biomass was estimated in various crops, such as sunflower [11], corn [12]
and wheat [13]. Mwinuka et al. [14] estimated the Normalized Difference Vegetation Index
(NDVI) and Optimized Soil Adjusted Vegetation Index (OSAVI) to predict the yield of
eggplant during its vegetative stage. Parker et al. [15] and Santos et al. [16] highlighted
the application of UAV for phenotyping (diversity and genetic improvement of crops) and
the identification of the variability of crop fields. In this last year, in Peru, some efforts
are being conducted to employ UAV + remote sensors to predict the yield for some crops.
Recently, the yield of maize was estimated using VIs from multispectral images [17]. More-
over, indices from RGB images were employed to estimate the height of a bean crop [18].
However, it is still necessary to generate more data and methodologies adapted to our
conditions since Peru possesses 84 out of the 104 life zones that exist in the world.

Estimating the yield of local commercial bean varieties with multispectral images
and sensors with a greater number of bands might be of help to the production system
of this crop. The objective of this work was to determine the correlation of different VIs
obtained by UAV multispectral images to develop predictive models of performance in
four Phaseolus vulgaris cultivars. This technology will make adequate and efficient use of
resources and inputs in agricultural production and research applied to crops.

2. Materials and Methods
2.1. Study Area

The study area was located at La Molina Research Station of the Instituto Nacional
de Innovación Agraria (INIA) (12◦4′ S, 76◦56′ W, altitude 240 m a.s.l.), La Molina, Lima
(Peru). The bean cultivation period was developed during the winter–spring seasons
(June–November 2021), using commercial varieties developed by INIA. According to the
Warren Thornthwaites climate classification [19], the study area is arid with maximum and
minimum temperatures of 33◦ and 10 ◦C, respectively, and total annual rainfall of 18 mm
in 2021. The meteorological data were recorded in an automatic station (VANTAGE Pro2
Plus Davis, Hayward, CA, USA) (Figure S1), located in the experimental plot. The type of
soil is sandy loam with physical characteristics of electrical conductivity (EC) of 0.70 dS/m,
pH of 7.41, field capacity of 14.7%, wilting point of 7.6% and bulk density of 1.54 g/cm3

(INIA-Water, Soil and Foliar Research Laboratory). The experimental design was split-
plots with a randomized complete block design, including four irrigation treatments and
three replicates and subplots of four commercial bean varieties (canario 2000 (C2000),
camanejo, cifac, costacen) (Figure 1). Each experimental plot was 36 m2 with five rows (8 m
long and 4.5 m wide). Four irrigation treatments were applied according to the reference
evapotranspiration (ETo), using the FAO Penman–Monteith methodology, which included
a control irrigation (100% ETo) and another three with 120% ETo, 80% ETo and 60 ETo %.
They were applied from flowering to maturity, and previous irrigations were similar to
control. The drip irrigation system had a discharge rate of 3.75 l/h with a spacing between
drippers of 0.25 m.



Drones 2023, 7, 325 3 of 18

Drones 2023, 7, x FOR PEER REVIEW 3 of 19 
 

2000 (C2000), camanejo, cifac, costacen) (Figure 1). Each experimental plot was 36 m2 with 
five rows (8 m long and 4.5 m wide). Four irrigation treatments were applied according to 
the reference evapotranspiration (ETo), using the FAO Penman–Monteith methodology, 
which included a control irrigation (100% ETo) and another three with 120% ETo, 80% 
ETo and 60 ETo %. They were applied from flowering to maturity, and previous 
irrigations were similar to control. The drip irrigation system had a discharge rate of 3.75 
l/h with a spacing between drippers of 0.25 m. 

 
Figure 1. Location of the study area the La Molina Experimental Center in Lima (Peru). 

2.2. Plant Height Measurement 
Plant height was measured manually from the soil surface to the highest stem apex 

in the plant on a metric scale (cm) with an equal number of samples (n = 48) at each 
monitoring date (26, 33, 40, 47, 54, 61, 68, 77, 82 and 89 days after sowing, DAS). 

2.3. Measurement of Chlorophyll Content 
Chlorophyll content estimation was performed using a SPAD meter (SPAD-502 

Minolta Co, Osaka, Japan) at 26, 33, 40, 47, 54, 54, 61, 68, 82 and 89 DAS. SPAD values were 
measured on a representative plant free of mechanical damage by choosing fully 
developed leaves from the upper third just after the flight mission on the day and time of 
each UAV inspection. Three readings were taken per experimental unit, with a total of 
forty-eight samples for each evaluation date. 

  

Figure 1. Location of the study area the La Molina Experimental Center in Lima (Peru).

2.2. Plant Height Measurement

Plant height was measured manually from the soil surface to the highest stem apex
in the plant on a metric scale (cm) with an equal number of samples (n = 48) at each
monitoring date (26, 33, 40, 47, 54, 61, 68, 77, 82 and 89 days after sowing, DAS).

2.3. Measurement of Chlorophyll Content

Chlorophyll content estimation was performed using a SPAD meter (SPAD-502 Mi-
nolta Co, Osaka, Japan) at 26, 33, 40, 47, 54, 54, 61, 68, 82 and 89 DAS. SPAD values
were measured on a representative plant free of mechanical damage by choosing fully
developed leaves from the upper third just after the flight mission on the day and time
of each UAV inspection. Three readings were taken per experimental unit, with a total of
forty-eight samples for each evaluation date.

2.4. Measurement of Dry Aerial Biomass and Yield

The aerial biomass was determined at 26, 40, 54, 68 and 82 DAS in the bean crop—
with a number of samples n = 48—of stems, leaves and pods, which were placed in a stove
(VENTICELL model LSIS-B2V/CV 404, Munich, Germany) at 103 ◦C for 24 h and weighed
to calculate the dry biomass. The sampling was carried out in an area of 0.13 m2 of each
experimental unit. The yield of the grain crop at 12–14% of commercial moisture was evaluated
considering the plot of 36 m2; these values were projected to tons per hectare (t/ha).
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2.5. Estimation of Vegetation Indices

To acquire multispectral images, we employed a quadcopter-type platform, DJI Ma-
trice 300 RTK (Shenzhen Dajiang Baiwang Technology Co., Ltd., Shenzhen, China). A dual
multispectral camera MicaSense RedEdge-Mx + RedEdge-MX Blue (MicaSense, RedEdge,
NC, USA) with ten multispectral bands (Coastal blue 444, Blue 475, Green 531, Green 560,
Red 650, Red 668, Red Edge 705, Red Edge 717, Red Edge 740 and NIR 842) with a 1.2 MP
global shutter was coupled to this UAV. The images were collected on 13 dates (33, 40,
47, 54, 61, 68, 76, 82, 89, 97, 103, 110 and 118 DAS) (Figures S1 and S2)—sunny days with
wind speeds less than 12 m/s—between 11:00 a.m. to 01:00 pm [20]. The flight plan was
made with the DJI Pilot 2 UAV application, considering a frontal and lateral overlap of
80%, height of 30 m, speed of 4.5 m/s and the camera focused on the nadir (perpendicular
to the ground surface), allowing a resolution of 2.08 cm/pixel to be obtained for multi-
spectral images for each pixel. The processing was performed with the Pix4Dmapper Pro
software (V4.8.0, Pix4D S.A., Prilly, Switzerland) and it was used for the construction of
orthomosaics, reflectances and Digital Surface Models (DSM).

In addition, the geometric correction was performed with nine control points previ-
ously installed and registered with differential Global Navigation Satellite System (GNSS)
(South Galaxy G1 model, South Surveying and Mapping Instrument Co., Ltd., Guangdong,
China). For the radiometric calibration of the multispectral images, the reflectance calibrator
panel and a DLS 2 light sensor with built-in GPS (Automatic Calibration Panel Detection
for MicaSense) that adjusts the readings to ambient light were used [11]. Then, the image
mosaic processing was specifically designed to process UAV images using techniques based
on both machine vision and photogrammetry.

The entire processing workflow was as follows: (i) initialize all geolocated images
captured on each flight by automatically finding feature tie points in matching image
pairs and correcting them based on camera model; (ii) nine ground control points were
incorporated to correct the geographic coordinates of the images; (iii) densified point clouds
were then generated with a 7 × 7 pixel matching window; (iv) finally, the digital surface
model and the orthophoto with a spatial resolution of 2.08 cm were generated using the
inverse distance weighting method. Vegetation indices were widely applied to predict crop
yield [17,21], according to Table 1.

Table 1. Vegetation indices applied for bean cultivars on different evaluated dates.

Indices Equation Source

Normalized Difference Vegetation Index (NDVI) NIR− RED
NIR + RED

[22]

Green Normalized Difference Vegetation Index (GNDVI) NIR− GREEN
NIR + GREEN

[23]

Normalized Difference RedEdge Index (NDRE) NIR− REDEDGE
NIR + REDEDGE

[24]

ChlorophyII Index Green (CIG)
(

NIR
G

)
− 1 [24]

Plant Cell Density (PCB)
(

NIR
R

)
[25]

Soil Adjusted Vegetation Index (SAVI) (NIR− RED)(1 + L)
NIR + RED + L

[26]

ChlorophyII Vegetation Index (CVI) NIR× RED
GREEN2

[27]

ChlorophyII Index-RedEdge (CIRE) NIR
REDEDGE

− 1 [28]

Difference Vegetation Index (DVI) NIR− REDEDGE [28]

Enhanced Vegetation Index (EVI) 2.5 × ((NIR − RED)/((NIR) + (6 × RED) − (7.5 × BLUE) + 1)) [28]

Triangular Vegetation Index (TVI) 0.5 × (120 × (NIR − GREEN) − 200 × (RED − GREEN) [28]
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In this study, we used two methods for the analysis of multispectral images: (i) a mask
was built only for the crop canopy with supervised classification constructed with QGIS
software [29] (method 1) (Figure S2); and (ii) the grids corresponding to the average of each
plot (n = 48) without classification were made to obtain the values and indices of reflectance
including the ground (method 2) (Figure S3).

2.6. Data Analysis and Model Development

We employed a split-plot design and data were analyzed with an analysis of variance
(ANOVA) and mean difference, with the Duncan test with an alpha = 0.05. Correlation
analyses were also performed with the Pearson-r estimator of yield and vegetation indices.
The data collected in this work were recorded in a field book according to the field plots
(n = 48) and were analyzed with software R v.4.2.2 [30] and RStudio v.7.2.576 [31] software
with packages, namely, GGally [32], ggplot2 [33] and agricolae [34] to carry out descriptive
statistics and determine the relationships between the variables of the images. Field refer-
ence measurements were tested to determine a significant correlation with two statistical
indicators—the Pearson correlation coefficient (r) and p-value—for significance. The evalu-
ated dates were grouped by varieties and their phenological stages: vegetative (33–47 DAS),
reproductive (54–68 DAS), ripening (76–97 DAS) and senescence (103–118 DAS), consid-
ering the average values of the 11 VIs obtained by the two classification methods of the
multispectral images, with a Pearson-r > 0.45. For the development of performance pre-
diction models, multiple linear regression was used. Model estimation was obtained from
method 1 and 2 by combining three to five VIs for each bean cultivar and phenological
stages. For the multivariate analysis, a principal component analysis (PCA) was used
using R software packages, factoextra [35] and FactoMiner [36], to discriminate the dates of
evaluation for the VIs evaluated from multispectral images obtained from UAV for different
stages of vegetative development of the four commercial beans.

3. Results
3.1. Effects of Irrigation Treatments and Grain Yield of Bean Varieties

In the ANOVA analysis, we only found differences for bean varieties. The camanejo
cultivar obtained the highest yield (2.77 ± 0.41 t/ha) in dry grain (approx. 12% humidity)
and the other varieties had similar yields (mean Sq: 1.19142, F value: 8.6594) (Figure 2a).
There were no yield differences under the irrigation treatments at 120, 100, 80 and 60%
Eto referential (mean Sq: 1.68836, F value: 1.2585) (Figure 2b). Moreover, we did not find
significant interaction between cultivars × irrigation (mean Sq: 0.13852, F value: 0.7105).
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deviation. ns. p-value > 0.05, * p-value < 0.05, ** p-value < 0.01 and *** p-value < 0.001. Red triangles
are each data collected.

3.2. Variables Evaluated during the Development of the Bean Crop

We observed a continuous increment for means of the plant height variable (13.28± 3.65,
20.99± 3.78, 25.81± 5.13, 25.79± 6.09, 33.78± 7.17, 36.84± 6.17, 34.95± 6.49, 43.22± 7.16,
49.46 ± 7.34 and 52.37 ± 8.52 cm, respectively) for each evaluation date between 26 at
89 DAS (Figure 3a), coinciding with its phenological development, with a growth rate of
4.34 ± 3.63 cm approximately for each week, a 17% increase in three cultivars (c2000, cifac
and camanejo) and 20% in costasen. The dry biomass variable exhibited a similar trend
(0.59 ± 0.03, 0.59 ± 0.03, 1.19 ± 0.29, 1.99 ± 0.72 and 3.04 ± 1.08 t/ha, respectively) at 26,
40, 54, 68, y 82 DAS (Figure 3c). The greatest increase in dry biomass evaluated at 54 DAS
was for camanejo, with 120% compared to the previous sampling. Cifac showed an increase
at 61 DAS up to 125% in aerial dry biomass On the other hand, the SPAD chlorophyll
content variable stopped its increase at 54 DAS (Figure 3b) (31.64 ± 3.83, 30.89 ± 3.11,
32.19 ± 3.03, 35.12 ± 3.45, 37.19 ± 3.10, 36.59 ± 2.75, 38.09 ± 2.92, 36.15 ± 3.47, 38.54 ± 3.29
and 37.51 ± 3.05 SPAD, respectively), coinciding with the phenological stage of flowering
(R5) and maximum foliage coverage in the plants; this continued until the R8 phase.
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3.3. Vegetation Indices Estimated

The VIs was calculated from the multispectral images on each evaluation date (13 dates
in total) (Table S1). They showed a continuous increase as the height of the plant developed
in the early stages of development (Figure 3a). The first seven indices had a similar trend
with respect to the different evaluation dates for plant height during the vegetative devel-
opment of the crop (Figure 4); the highest mean values of these indices were determined
between 76 to 97 DAS with NDVI (0.88) (Figure S4) GNDVI (0.75), NDRE (0.42) (Figure S5),
CIG (6.27), PCB (17.11), SAVI (0.73) and CIRE (1.48) (Figure 4a–g). CVI, DVI, EVI and TVI
indices did not show this trend; on the contrary, their highest mean values were observed at
103 DAS for CVI (4.92) and 89 DAS for EVI (0.35) and TVI (0.88) (Figure 4h–k and Table S1).

On the other hand, when performing the analyses of the multispectral images with
method 2 (Table S2), the maximum vegetation indices estimated decreased between 35–25%
with respect to method 1, PCB (−35%), TVI (−34%), DVI (33%), EVI (31%), SAVI (29%),
CIRE (27%), NDVI (25%) and CIG (25%), respectively. In the case of CVI, it increased
1% compared to method 1. The GNDVI and NDRE indices also decreased 12 and 23%,
respectively, using method 2.
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3.4. Pearson-r Correlation of Vegetation Indices and Yield

With method 1, the highest significant correlations between VIs and yield were ob-
served after 61 DAS (Table 2), obtaining the maximum directly proportional correlation for
the CIRE and DVI indices at 103 DAS (r = 0.633 *** and r = 0.636 ***, respectively). Inversely
proportional correlations were also obtained at 118 DAS for six indices (NDVI, GNDVI,
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NDRE, CIG, PCB and SAVI) and they were highly significant (p-value > 0.001). Table 3
shows correlation of VIs and yield with method 2. Highly significant (***) correlations
between 97 to 118 DAS were observed for the following six VIs: NDVI, GNDVI, SAVI, DVI,
EVI and TVI (0.543 > r > 0.47).

Yield prediction models with average index values by variety and phenological stage
(Figure 5) allowed us to define and establish those models with the highest performance
based on the number of indexes combined for the equation. The highest correlation during
the vegetative stage was obtained for two commercial bean cultivars—c2000 and camanejo—
for both methods (Figure 6a–d).

The Equations (1) and (2) for c2000 are as follows, for method 1 and for method 2,
respectively:

Y = 127.7 − 284.90 × NDVI + 73.18 × GNDVI + 6.45 × PCB − 6.85 × CVI + 13.93 × CIRE (1)

Y = 26.94 − 109.20 × NDVI + 17.55 × PCB − 31.25 × CIRE − 475.58 × EVI + 9.71 × TVI. (2)

Cultivar camanejo exhibited the following equation for method 1 and method 2
(Equations (3) and (4), respectively):

Y = −49.28 + 109.65 × NDVI − 110.31 × NDRE + 4.51 × CIG − 49.59 × SAVI + 20.31 × EVI (3)

Y = 65.58 − 61.22 × NDVI + 47.03 × CIG − 7.97 × PC1 − 28.58 × CVI − 43.69 × CIRE. (4)

On the other hand, the model with the lowest performance in the vegetative stage
(Figure 6c,f) was for the cultivar cifac for method 1 and for method 2 (Equations (5) and (6),
respectively).

Y = −45.76 − 189.45 × DVI + 293.7 × EVI − 4.25 × TVI (5)

Y = 1.97 − 480.94 × SAVI + 49.61 × CIRE + 395.43 × EVI (6)

For the prediction models in the reproductive stage of the four bean cultivars (Figure 7),
cifac and costacen obtained the highest correlation for method 1 (Equations (7) and (8),
respectively) (Figure 7a).

Y = −22.76 + 17.41 × NDVI + 53.80 × NDRE − 6.08 × CIG + 2.75 × CVI + 13.93 × EVI (7)

Y = 36.17 − 2.47 × CIG + 22.67 × SAVI − 5.71 × CVI + 150.16 × DVI − 84.14 × EVI (8)

On the other hand, the model with the lowest performance in the reproductive stage
(Figure 5a,d) was for the cultivar c2000 for method 1 and for method 2. (Equations (9) and (10),
respectively).

Y = −40.4763 + 0.547881 × CIG + 1.61598 × CVI + 11.4552 × CIRE − 190.631 × DVI + 96.5895 × EVI (9)

Y = 11.6643 + 13.4889 × CIG − 1.60859 × PCB − 344.502 × DVI − 315.032 × EVI + 9.67038 × TVI (10)

The lower the numbers of VIs that are employed for the prediction models, the lower
their R2 performance (Figures 6 and 7). Each VI has its own distribution on the reflectance
of the bean crop and the four cultivars evaluated. In this work, we found that for the
optimum VI combinations, between four and five VIs of the eleven calculated were better,
depending on the evaluated phenological stage in which the model was built.



Drones 2023, 7, 325 9 of 18

Table 2. Pearson-r correlations of bean yield with 11 VIs (NDVI, GNDVI, NDRE, CIG, PCB, SAVI, CVI, CIRE, DVI, EVI and TVI) evaluated on 13 dates during their
vegetative development with supervised classification to generate the mask only from the crop canopy (method 1).

DAS NDVI GNDVI NDRE CIG PCB SAVI CVI CIRE DVI EVI TVI

33 −0.259 −0.158 −0.127 −0.159 −0.298 * 0.314 * −0.321 * −0.23 0.001 0.138 0.130
40 −0.218 −0.246 −0.103 −0.252 −0.210 −0.139 −0.184 0.184 0.291 * 0.288 * 0.281
47 −0.092 −0.131 −0.076 −0.111 −0.063 −0.047 −0.069 0.214 0.319 * 0.313 * 0.317 *
54 −0.072 −0.123 −0.080 −0.111 −0.038 −0.050 −0.002 0.313 * 0.360 * 0.298 * 0.354 *
61 −0.120 −0.179 −0.211 −0.164 −0.080 −0.137 0.208 0.375 ** 0.475 *** 0.420 ** 0.411 **
68 −0.135 −0.327 * −0.250 −0.331 * −0.079 −0.168 0.035 0.399 ** 0.496 *** 0.500 *** 0.489 ***
76 −0.008 0.013 0.016 0.008 −0.039 −0.024 0.184 0.534 *** 0.514 *** 0.453 *** 0.429 ***
82 −0.092 −0.165 −0.145 −0.163 −0.094 −0.148 0.447 *** 0.566 *** 0.555 *** 0.515 *** 0.497 ***
89 −0.055 −0.124 −0.137 −0.145 −0.092 −0.074 0.409 ** 0.568 *** 0.543 *** 0.507 *** 0.453 ***
97 −0.109 −0.116 −0.097 −0.131 −0.103 −0.125 0.417 ** 0.628 *** 0.620 *** 0.599 *** 0.576 ***

103 −0.177 −0.162 −0.128 −0.159 −0.167 −0.172 0.507 *** 0.633 *** 0.636 *** 0.611 *** 0.587 ***
110 −0.081 −0.054 −0.018 −0.047 −0.049 −0.130 0.508 *** 0.605 *** 0.628 *** 0.613 *** 0.581 ***
118 −0.452 ** −0.389 ** −0.377 ** −0.394 ** −0.453 ** −0.460 ** 0.046 0.515 *** 0.559 *** 0.575 *** 0.591 ***

ns. p-value > 0.05, * p-value < 0.05, ** p-value < 0.01 and *** p-value < 0.001.

Table 3. Pearson-r correlations of bean yield with 11 VIs (NDVI, GNDVI, NDRE, CIG, PCB, SAVI, CVI, CIRE, DVI, EVI and TVI) evaluated on 13 dates during their
vegetative development without classification to generate the mask with soil and crop canopy (method 2).

DAS NDVI GNDVI NDRE CIG PCB SAVI CVI CIRE DVI EVI TVI

33 0.099 −0.077 −0.120 −0.019 0.203 0.110 −0.288 * −0.079 −0.003 0.155 0.176
40 0.345 * 0.316 * 0.221 0.325 * 0.331 * 0.313 * −0.112 0.246 0.260 0.318 * 0.334 *
47 0.363 * 0.374 ** 0.355 * 0.359 * 0.342 * 0.332 * −0.177 0.350 * 0.321 * 0.335 * 0.341 *
54 0.356 * 0.345 * 0.349 * 0.345 * 0.345 * 0.337 * −0.222 0.347 * 0.332 * 0.332 * 0.341 *
61 0.379 ** 0.386 ** 0.376 ** 0.380 ** 0.356 * 0.356 * −0.105 0.376 ** 0.369 ** 0.357 * 0.356 *
68 0.384 ** 0.410 ** 0.387 ** 0.400 ** 0.351 * 0.381 ** 0.086 0.386 ** 0.380 ** 0.382 ** 0.377 **
76 0.395 ** 0.418 ** 0.389 ** 0.405 ** 0.359 * 0.384 ** 0.195 0.384 ** 0.378 ** 0.382 ** 0.378 **
82 0.426 ** 0.443 ** 0.419 ** 0.424 ** 0.382 ** 0.419 ** 0.246 0.408 ** 0.410 ** 0.418 ** 0.413 **
89 0.484 *** 0.471 *** 0.449 ** 0.441 ** 0.427 ** 0.471 *** −0.178 0.430 ** 0.452 ** 0.475 *** 0.468 ***
97 0.540 *** 0.526 *** 0.487 *** 0.494 *** 0.494 *** 0.536 *** 0.175 0.464 *** 0.504 *** 0.533 *** 0.529 ***

103 0.523 *** 0.522 *** 0.480 *** 0.503 *** 0.493 *** 0.512 *** 0.285 * 0.466 *** 0.483 *** 0.508 *** 0.501 ***
110 0.533 *** 0.507 *** 0.474 *** 0.482 *** 0.491 *** 0.540 *** 0.108 0.457 ** 0.505 *** 0.544 *** 0.543 ***
118 0.525 *** 0.470 *** 0.439 ** 0.453 ** 0.470 *** 0.533 *** −0.268 0.433 ** 0.484 *** 0.530 *** 0.539 ***

ns. p-value > 0.05, * p-value < 0.05, ** p-value < 0.01 and *** p-value < 0.001.
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multispectral images analysis.
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Figure 6. Yield evaluated in the field and prediction models for yield of four commercial bean cul-
tivars with multiple linear regression with VIs for the vegetative state of its phenology (33–47 DAS) 
with supervised classification (with s.c.) for method 1 (a–c) and method 2 (d–f) of the analysis of 
multispectral images. ns. p-value > 0.05, * p-value < 0.05, ** p-value < 0.01 and *** p-value < 0.001. 

Figure 6. Yield evaluated in the field and prediction models for yield of four commercial bean
cultivars with multiple linear regression with VIs for the vegetative state of its phenology (33–47 DAS)
with supervised classification (with s.c.) for method 1 (a–c) and method 2 (d–f) of the analysis of
multispectral images. ns. p-value > 0.05, * p-value < 0.05, ** p-value < 0.01 and *** p-value < 0.001.
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Figure 7. Yield evaluated in the field and prediction models for yield of four commercial bean cul-
tivars with multiple linear regression with VIs for the reproductive stae of its phenology (54 at 68 
DAS) with supervised classification (with s.c.) for method 1 (a–c) and method 2 (d–f) of the analy-
sis of multispectral images. ns. p-value > 0.05, * p-value < 0.05, ** p-value < 0.01 and *** p-value < 
0.001. 

Figure 7. Yield evaluated in the field and prediction models for yield of four commercial bean cultivars
with multiple linear regression with VIs for the reproductive stae of its phenology (54 at 68 DAS)
with supervised classification (with s.c.) for method 1 (a–c) and method 2 (d–f) of the analysis of
multispectral images. ns. p-value > 0.05, * p-value < 0.05, ** p-value < 0.01 and *** p-value < 0.001.
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3.5. Multivariate—Principal Components Analysis

The principal component analysis (PCA) for the 13 dates evaluated throughout the
vegetative development of beans, with 11 VIs estimated from multispectral images with
method 1 (Figure 8a), explained 90.6% of variance with their values. The first two com-
ponents (Dim1, 72% and Dim2, 18.6%), in which the last three groups in chronological
order are widely dispersed, and are not adequately differentiated from the other clusters,
for which reason it was proposed that we build another PCA graph in biplot for the first
10 evaluations from 33 to 97 DAS (Figure 7b), which succeeded in explaining 93.2% of the
observed variance and would be between stages V4 to R8 of the bean crop phenology [37].
Regarding the variables of the indexes in the PCA, we can observe a great correlation
between EVI and TVI (r = 0.98 ***) and between SAVI and DVI (r = 0.79 ***) with 89 DAS
(Figure 8a,b). The PCA with the estimated indices of method 2 for the 13 (96.7% of the
explained variance) and 10 dates evaluated (97.1% of the explained variance) (Figure 8c,d)
showed less clarity in the groupings between the evaluated dates based on these 11 indices,
in comparison with the PCA obtained from the estimated indices of method 1. These vege-
tation indices, based on the reflectance of the canopy for each plot of the four commercial
bean cultivars with yields (Figure 9), are a current and practical alternative for crop research
and production.
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Figure 9. Yield map according to each plot in the experimental field, where plot 101 (1, 2, 3 and 4)
corresponds with irrigation treatments and the sub-plot (101_1, 101_2, 101_3 and 101_4) (48 unit)
corresponds with four commercial bean cultivars.

4. Discussion

The yield of a crop depends on the environmental factor, the genetic purity of the
seed [38], its interaction with other species and organisms in its environment, the agricultural
inputs required and agronomic management. These will influence the yield component to a
greater or lesser extent [39]. To forecast yield, new emerging technologies are required, such as
geospatial tools for the development of predictive models in agriculture [40]. Unfortunately,
these tools have not been widely employed in Peruvian agriculture.

Bean grain yield showed significant differences among cultivars. The camanejo cultivar
had the highest yield (2.77 t/ha), and the average yields obtained were higher than the
national average of 1.2 t/ha [4]. The planting frames between plants (0.4 m) and planting
furrows (0.9 m) were fundamental to the development of a good aerial biomass, thus
allowing the accumulation of photosynthates in reserve organs such as bean seeds, as
reported by Ferrer-Vilca et al. [41], who obtained 2.71 t/ha with organic fertilizer sources
in fertile soils in the Amazonian highlands, in the region of Huánuco. The total irrigation
lamina (Lr) applied per treatment was as follows: 327 mm (ETo 120%), 307 mm (ETo 100%),
287 mm (ETo 80%) and 266 mm (ETo 60%). Likewise, there were no significant differences
for yield (Figure 2b). These results indicate that the bean crop is highly resistant to water
stress during the flowering and ripening stage. Irrigation sheets for the bean crop in arid
zones require a volume of 300 to 500 mm as reported by Beebe et al. [42].

The biometric growth variables (plant height and dry biomass) showed a continuous
increase, as well as the VIs (Figures 3 and 4, Tables S1 and S2) of the bean cultivars [43,44], as
observed for NDVI, GNDVI, NDRE, CIG, PCB and CIRE indices in this work (Figure 4a–g).
However, these biometric variables presented low correlation with respect to yield. Like-
wise, chlorophyll content showed no correlation with yield. This could be due to morpho-
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logical differences in these cultivars; there are slight changes in time for each phenological
stage per cultivar, as indicated by Keles et al. [45], who found the highest correlation of
SPAD with yield in the flowering stage, but not in later stages (R2 = 0.07 ns).

Two methods (methods 1 and 2) were used (Figures S2 and S3), each with 11 VIs,
which allowed us to find different index results for the generation of yield prediction
models (Figures 6 and 7). In the vegetative stage, the best model was obtained with
method 2, and in the reproductive stage with method 1. These results allowed for a better
analysis and interpretation of results on the influence of the soil with respect to the plant
canopy, the adequate management of resources and data processing. According to these
results, Palaniswami et al. [46] indicated that in remote sensing, it is necessary to delimit or
classify the vegetation to eliminate noise within the image; the RGB image allows a better
classification of vegetation by grouping identical pixels with the categories of interest of
the user, as performed in method 1.

The results of this study showed high correlations (***) between the yield for four
cultivars and VIs, during 89 to 118 DAS (Tables 2 and 3). The models built with data
from these four cultivars, both for method 1 and 2, showed maximum R2 at 103 and
110 DDS (Figures S6 and S7) using at least five VIs (R2 = 0.483 *** and R2 = 0.476 ***,
respectively). These phenological stages (R8 and R9) correspond to maturity and the
beginning of senescence, as shown in Figure 8, the yield map per evaluated plot. Likewise,
prediction models were established for the early stages (vegetative and reproductive) per
cultivar. Therefore, this research determined the average VIs by the phenological stage
in the bean crop and then calculated the correlation (Pearson-r) between the averages VIs
(Figure 5) with both methods, showing greater significance and variation between the
vegetative (Figure 5a,b), reproductive (Figure 5c,d) and maturity (Figure 5e,f) stages, with
the CIRE, DVI, EVI and TVI indices with respect to the other six VIs (NDVI, GNDVI, CIG,
NDRE, PCB and SAVI). In method 1 (Figure 5a,c,e), there was no correlation, and they
presented Pearson-r values negative or close to zero, while in method 2 (Figure 5b,d,f), they
had highly significant correlations, with Pearson-r close to one, showing a clear influence of
ground reflectance together with canopy cover on multispectral images for the CVI, CIRE,
DVI, EVI and TVI indices. The development of the prediction models for each cultivar by
phenological stage allowed us to increase the R2 value, reaching the maximum for cultivar
c2000 (R2 = 0.9424 **) in the vegetative stage with method 1. These indices will allow us
to discriminate, with high precision, the phenological stages between cultivars or other
study treatments.

The supervised classification for method 1 considers orthomosaic images over the crop
canopy, allowing for a better grouping between the dates evaluated in the PCA (Figure 8a,b)
with the VIs. This is because it only considers the reflectance of the aerial biomass of the
plants [42], mainly at the vegetative growth, maturity (stages V4 to R8) and senescence
stages. These analyses were also used in remote sensing studies as reported by Mokarram
and Pham [47], who predicted the yield of two species, namely, as palm and pomegranate,
by evaluating the effect of drought on yield with NDVI, PCI and VCI VIs. Prudnikova
et al. [48] expressed that differences in the global reflectance values of the soils studied are
mainly due to variations in their organic matter contents, since they have a similar texture
and mineralogical composition, which influences the estimation of the vegetation indices
and the reflectivity of crops.

Yield prediction at pre-harvest stages, with traditional methods, is time consuming,
subjective and costly. On the other hand, the empirical models are usually limited specifically
to the area and the surrounding environment [49] at a local level, and the results obtained
may present the most practical and effective method for yield prediction [50] by the cultivar
and phenological stages, with very little data collected in the field. However, there are
also various machine learning methods, including neural networks, tree ensembles and a
kernel method to predict yield crops [51]. The methodologies employed in this work can be
applied in the different regions of Peru, where bean cultivars are usually grown.
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5. Conclusions

Multispectral UAV imagery was demonstrated to have great potential in the yield
estimation of P. vulgaris. In this work, prediction models were developed for four bean
cultivars under four irrigation treatments in pre-harvest stages. Results confirmed that
the estimation of vegetative indices at different crop stages provided a high degree of
correlation with yield with respect to CIG, PCB, DVI, EVI and TVI indices with method
2 for the c2000 cultivar, but when model 1 (NDVI, NDRE, SAVI, CVI and CIRE) and 2
(NDVI, SAVI, CVI, EVI and TVI) were employed at the reproductive stage, a high degree
of correlation was obtained for the camanejo cultivar. The models that best predicted
bean yield were estimated for the physiological stages, i.e., V3–V4 and R6–R8 (vegetative
and reproductive). The principal components for the dates evaluated with the vegetation
indices showed a change and increase in the values of the indices according to the vege-
tative development and phenology of the crop, representing a potential tool by which to
discriminate treatments or evaluations of crop management.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/drones7050325/s1, Figure S1: Meteorological data for the year
2021 (Vantage pro2 DAVIS) in the study area recorded every hour: (a) atmospheric pressure, (b) tem-
perature (◦C), (c) relative humidity (%), (d) wind speed (m/s), solar radiation and (f) UV index in
experimental field; Figure S2: Creation of an analysis mask on the orthomosaic of the experimental
field with supervised classification to delimit only the crop canopy (method 1 for analysis the multi-
spectral images); Figure S3: Creation of an analysis mask on the orthomosaic of the experimental
field without classification to delimit each plot including soil and crop canopy (method 2 for analysis
the multispectral images); Figure S4: Normalized Difference Vegetative Index (NDVI) for 13 dates
evaluated in each plot from bean crop. This index was estimate from method 1; Figure S5: Normalized
Difference Red Edge (NDRE) for 13 dates evaluated in each plot from bean crop. This index was
estimate from method 1; Figure S6: Prediction models for bean yield with multiple linear regression
with vegetation indices at 68–118 DAS with supervised classification to generate the mask only from
the crop canopy (method 1 for analysis the multispectral images); Figure S7: Prediction models for
bean yield with multiple linear regression with vegetation indices at 61–118 DAS without supervised
classification to generate the mask with soil and crop canopy (method 2 for analysis the multispectral
images); Table S1: Comparison of means by Duncan test with alpha = 0.05 for the 11 vegetation
indices estimated in the 13 dates evaluated with supervised classification on the bean crop canopy by
plot (method 1 for analysis the multispectral images); Table S2: Comparison of means by Duncan test
with alpha = 0.05 for the 11 vegetation indices estimated in the 13 dates evaluated with supervised
classification on the bean crop canopy by plot (method 2 for analysis the multispectral images).
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