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New-generation sequencing technologies, among them SNP chips for massive
genotyping, are useful for the effective management of genetic resources. To date,
molecular studies in Peruvian cattle are still scarce. For the first time, the genetic
diversity and population structure of a reproductive nucleus cattle herd of four
commercial breeds from a Peruvian institution were determined. This nucleus
comprises Brahman (N = 9), Braunvieh (N = 9), Gyr (N = 5), and Simmental (N =
15) breeds. Additionally, samples from a locally adapted creole cattle, the Arequipa
Fighting Bull (AFB,N = 9), were incorporated. Female individuals were genotyped with
theGGPBovine100Kandmaleswith theBovineHD.Quality control, and theproportion
of polymorphic SNPs, minor allele frequency, expected heterozygosity, observed
heterozygosity, and inbreeding coefficient were estimated for the five breeds.
Admixture, principal component analysis (PCA), and discriminant analysis of
principal components (DAPC) were performed. Also, a dendrogram was
constructed using the Neighbor-Joining clustering algorithm. The genetic diversity
indices in all breeds showed a high proportion of polymorphic SNPs, varying from
51.42% inGyr to 97.58% in AFB. Also, AFB showed the highest expected heterozygosity
estimate (0.41 ± 0.01), while Brahman the lowest (0.33 ± 0.01). Besides, Braunvieh
possessed the highest observed heterozygosity (0.43 ± 0.01), while Brahman the
lowest (0.37 ± 0.02), indicating that Brahman was less diverse. According to the
molecular variance analysis, 75.71% of the variance occurs within individuals, whereas
24.29% occurs among populations. The pairwise genetic differentiation estimates (FST)
between breeds showed values that ranged from 0.08 (Braunvieh vs. AFB) to 0.37
(Brahman vs. Braunvieh). Similarly, pairwise Reynold’s distance ranged from 0.09
(Braunvieh vs. AFB) to 0.46 (Brahman vs. Braunvieh). The dendrogram, similar to
the PCA, identified two groups, showing a clear separation between Bos indicus
(Brahman and Gyr) and B. taurus breeds (Braunvieh, Simmental, and AFB). Simmental
andBraunviehgroupedcloselywith theAFBcattle. Similar resultswereobtained for the
population structure analysiswithK=2. The results from this studywould contribute to
the appropriatemanagement, avoiding lossof genetic variability in thesebreeds and for
future improvements in this nucleus. Additional work is needed to speed up the
breeding process in the Peruvian cattle system.
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1 Introduction

Livestock production around the world is a large sector with an
important contribution of 40% and 20% to agriculture production in
developed and developing countries, respectively (Herrero et al.,
2013; Baltenweck et al., 2020; FAO, 2022). A large part of Peru’s
livestock economy revolves around cattle production (León-Velarde
and Quiroz, 2004). According to the latest Peruvian National
Agricultural Census (Instituto Nacional de Estadística e
Informática, 2012), Peruvian creole cattle (PCC) is the most
predominant cattle population (64.03%). PCC is prevalent in the
Andean sector of the country, where it has been adapted to the
highlands climate conditions (Quispe, 2016; Delgado et al., 2019).
However, in comparison with exotic breeds, PCC achieves smaller
body weights and milk production records (Espinoza and Urviola,
2005; Dipas Vargas, 2015; Ruiz et al., 2021).

Due to the low productivity, small farmers breeding strategy is to
crossbred PCC with other specialized breeds in order to take advantage
of the heterosis effect (Seré et al., 1996;W. et al., 2019). Nowadays, there
are a high availability of bovine breeds that can be used to improvemilk,
meat or double purpose production (Thibier and Wagner, 2002;
Mebratu et al., 2020). However, Peruvian initiatives are lacking the
understanding of the genetics behind. Genetic diversity knowledge is
essential for the effective management of genetic resources (Groeneveld
et al., 2010; Hoban et al., 2013). In recent years the availability of
genotyping technology has become affordable in livestock allowing to
increase genetic studies (Mukhopadhyay et al., 2020). As a result, SNP
markers are becoming increasingly common for diversity analysis and
population structure studies (Morin et al., 2009; Haasl and Payseur,
2011). SNP markers have the advantage of being abundant in the
genome, as well as the ability to be automated through high-through
genotyping panels (Beuzen et al., 2000; Vignal et al., 2002).

In developing countries, nucleus breeding systems represent a
good strategy for animal genetic improvement for ruminants.
Concentrating nucleus cattle in one or a few herds to disseminate
genetic material to other populations is helpful (Kiwuwa, 1992;
Schrooten and van Arendonk, 1992). In 1993, a Peruvian
government herd composed of Brahman, Braunvieh, Gyr and
Simmental breeds was established with the aim to develop
reproductive technology research, such as artificial insemination
and embryo transfer. Currently, the herd is distributing semen
straws and embryos to producers’ associations in order to
disseminated specialized cattle breed genetics. This herd is been
called a genetic nucleus herd, however, there is scarcity of data
available in pedigrees and production records. Therefore, this study
aims to provide understanding of the genetic diversity among the
breeds on this herd, and its population structure, including a PCC
group on the study. We expect to genomic characterize the nucleus
using SNP markers, by obtaining genetic diversity and population
structure parameters.

2 Materials and methods

2.1 Animal sampling and DNA extraction

A total of 63 blood samples were collected from four commercial
breeds of taurus (Braunvieh and Simmental) and indicus cattle

(Brahman and Gyr). According to their pedigree, up to
grandfathers, genetic origins for Brahman and Gyr were
predominantly from Brazil; for Braunvieh, Switzerland and
Colombia; while for Simmental was Germany (Supplementary
Table S1). Blood sampling was performed from a government
herd, the Donoso Agricultural Research Station (EEA Donoso in
Spanish) located in Huaral, Lima (128 masl; 11°31′18″ S and
77°14′06″ W). Pedigree was checked to avoid sampling from
related individuals, animals were not siblings or had a parental
relationship. Blood samples were collecterelated individuals, animals
were not siblings or have a parentald from the epidural vein using a
vacutainer containing EDTA as an anticoagulant and were
immediately transferred to the laboratory for DNA extraction.
Additionally, we got access to 12 hair samples that were collected
from the tail of individuals that were considered as “Arequipa
fighting bull” (AFB), which are bovines from Arequipa region
(2,335 masl; 15°29′58″ S and 72°21′36″ W). Most of these
individuals were selected as they possessed most of the
morphological characteristics of a PCC as identified by their
owners, where its body is unbalanced with the topline being
higher on the front and becoming smaller toward the rear. For
the PCC, the hooks to pin are lower-level hipped when compared to
other breeds of cattle, dairy or beef. The length of the body is shorter,
as is the topline. Colors of hair have multiple variations. The
diversity of colors ranges from a total color cover to mixed ones
and spotting ones.

We extracted genomic DNA from whole blood and hair samples
with the Wizard Genomic DNA Purification Kit (Fitchburg, WI,
United States) following the manufacturer’s instructions. The
quality and quantity of genomic DNA were assessed using
agarose gel electrophoresis and a Nanodrop spectrophotometer
(Model ND 2000, Thermo Fisher Scientific, Wilmington, DE,
United States) prior to genotyping. In addition, 40 genotypes
from reference breeds were included in the analyses. The
reference breeds were sourced from Decker et al. (2014) and the
world reference dataset in Web-Interfaced Next-Generation
Database (WIDDE) database (Sempéré et al., 2015). Breeds
included were Brahman, Braunvieh, Gyr, and Simmental.

2.2 SNP genotyping and quality control

DNA samples were genotyped using Illumina Bovine HD
Genotyping BeadChip and Illumina GGP Bovine 100K BeadChip
with the help of the commercial genotyping service provider
(Neogen, Geneseek, NL, United States). Female individuals were
genotyped with the GGPBovine100K and males with the BovineHD.
The Bovine HD and 100K chips possess 777,962 and 95,256 SNPs,
respectively, uniformly spanning over the entire bovine genome. A
total of 87,669 common markers between both SNP panels were
used for the following analysis. From the total of 71 animals
sampled, we discarded the ones with a genotype call rate minor
to 85% (Purfield et al., 2016). A total of 18 samples were discarded
before starting the SNP quality control. We started the SNP quality
control with 53 animals and 47 remained for the following analysis
after quality control.

SNPs quality control was performed using the PLINK v1.9
program (Purcell et al., 2007). SNPs assigned to sex
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chromosomes and those lacking genomic locations were excluded
from the analysis. SNPs with missing genotypes in more than 10% of
individuals, missing rate per SNP of 10%, andminor allele frequency
(MAF) lower than 0.05 were excluded. However, SNP filtering based
on the Hardy–Weinberg equilibrium was not performed since we
expected Hardy–Weinberg deviations in the studied populations
due to their small and possibly sub-structured population and
genetic drift (Chen et al., 2017). We used 80,178 autosomal SNPs
that remained after applying filtering criteria to assess genetic
diversity. Additionally, linkage disequilibrium pruning, using the
parameter indep (50 5 2), was performed before the population
structure analysis. A total of 16,345 SNPs were obtained after
pruning for LD.

2.3 Genetic diversity

To assess the genetic diversity within the studied population
we used different genetic diversity parameters. The proportion
of polymorphic SNPs (Pn), MAF, expected heterozygosity (He),
observed heterozygosity (Ho), and inbreeding coefficient (FIS)
were estimated using R package dartR (Gruber et al., 2018). The
distribution of MAF was grouped into five different categories
based on the frequency of rare alleles (0 < MAF ≤0.1),
intermediate alleles (0.1 < MAF ≤0.2, 0.2 < MAF ≤0.3, and
0.3 < MAF ≤0.4), and common alleles (0.4 < MAF ≤0.5).

2.4 Population structure

Different approaches were employed to investigate the genetic
structure among the cattle populations of the EEA Donoso herd,
and assess their relationships with the AFB cattle. First, an analysis
of molecular variance (AMOVA) was performed with ARLEQUIN
v.3.5.2 software (Excoffier and Lischer, 2010), with the locus by
locus option and 1,000 permutations. PGDSpider
v.2.1.1.5 software (Lischer and Excoffier, 2012) was used to
convert files between PLINK and Arlequin formats. We used
ARLEQUIN to assess the divergence among breeds. Genetic
differentiation among breed (FST) fixation indices were
calculated using 20,000 permutations and a significance level of
0.05. Also, Reynold’s distance was performed. Second, a principal
component analysis (PCA), and a discriminant analysis of
principal components (DAPC) were perform with PLINK. The
factorextra (Kassambara and Mundt, 2017) and adegenet (Jombart
and Collins, 2017) R packages were used to generate eigenvectors
and eigenvalues, and the outputs were visualized using the package
ggplot2 (Gómez-Rubio, 2017). For PCA and DAPC, animals form
the referenced population were included in the analyses. Third, an
assessment of population genetic structure was performed using
the default settings of ADMIXTURE v.1.3 software (Alexander
et al., 2009). The most appropriate K value was selected after
considering 10-fold cross-validations whereby the best K exhibits
low cross validation error compared to other K values (Alexander
and Lange, 2011). Finally, a Neighbor-Joining tree was constructed
using vcfR (Knaus and Grünwald, 2017), pegas (Paradis, 2010), and
ape (Paradis and Schliep, 2019) packages in R. Additionally,
1,000 bootstrap replicates were conducted.TA
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3 Results

3.1 Genetic diversity analysis

The results of the genetic diversity parameters calculated for the
different cattle breed groups genotyped are summarized in Table 1.
Most of the breeds show a high Pn, varying from 51.42% in Gyr to
97.58% in AFB. The highest mean MAF value was observed in AFB
(0.32 ± 0.13), and the lowest value was observed in Gyr (0.13 ± 0.16)
with a mean value of 0.23 across populations. The He ranged from
0.33 (Brahman) to 0.41 (AFB). The highest observed heterozygosity
was observed in Braunvieh (0.43 ± 0.01), while the lowest was in
Brahman (0.37 ± 0.02). The Ho was greater than the He and the
inbreeding coefficient was negative for the breeds, except for AFB.

Minor allele frequency distribution for different categories is
shown in Figure 1. Among the five cattle breeds, AFB (25,504) and
Gyr (3,903) showed the highest and the lowest count of SNPs when
MAF greater than or equal to 0.3.

The Gyr breed had a higher count of SNPs in the lowest MAF
interval (MAF≤0.1) compared to the counts of SNPs in the higher
MAF intervals. The count of SNPs for the Braunvieh, AFB, and
Simmental cattle breeds was shown to be higher as the MAF interval

FIGURE 1
Distribution of minor allele frequency for each cattle breed.

TABLE 2 Analysis of molecular variance among five cattle breeds.

Source of variation Degree of freedom Sums of squares Variance component % of variations

Among population 4 365574.76 4,301.64 24.29

Within individuals 89 1184932.66 13411.11 75.71

Total 93 1550507.41 17712.74

TABLE 3 Estimates of the pairwise genetic differentiation statistic (FST
statistics; below the diagonal) and the Reynold’s genetic distance (above the
diagonal) among five cattle breeds.

Breed Brahman Braunvieh Gyr AFB Simmental

Brahman 0.46 0.14 0.38 0.43

Braunvieh 0.37 0.44 0.09 0.13

Gyr 0.13 0.36 0.36 0.42

AFB 0.31 0.08 0.30 0.09

Simmental 0.35 0.12 0.34 0.09
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increased. For the Brahman and Gyr breeds the count of SNPs
decreased.

3.2 Population structure

The AMOVA results (Table 2) showed that the most important
part of the genetic variation (75.71%) was observed within the cattle
breeds and variability among the cattle breeds was 24.29%. Also,
pairwise FST and Reynold’s distance among all populations were
estimated (Table 3). The pairwise FST estimates among
breeds ranged from 0.08 (AFB-Braunviehpair) to 0.37

(Braunvieh-Brahman pair). The pairs Braunvieh-Brahman and
Braunvieh-Gyr showed high pairwise FST values, with 0.37 and
0.36, respectively. Furthermore, the pairs Braunvieh-AFB, and AFB-
Simmental showed the lowest pairwise FST values, with 0.08 and
0.09, respectively. The pairwise Reynold’s distance showed a pattern
similar to the one obtained with the FST statistics, with values
ranging from 0.09 (AFB-Braunvieh pair) to 0.46 (Braunvieh-
Brahman pair). The pairs Brahman-Braunvieh and Braunvieh-
Gyr showed high pairwise Reynold’s distance values, with
0.46 and 0.44, respectively. Furthermore, the pairs AFB-
Braunvieh, and AFB-Simmental showed the lowest pairwise FST
values, with 0.09, respectively each.

FIGURE 2
Principal component analysis (PCA) and Discriminant analysis of principal components (DAPC) plots. Samples belong to a reproductive cattle herd
that comprises with Brahman (N = 9), Braunvieh (N = 9), Gyr (N = 5), and Simmental (N = 15) breeds; a locally adapted creole cattle, the Arequipa Fighting
Bull (AFB, N = 9); and 40 genotype samples from reference breeds included in the analyses (subscript with _REF). Symbols and colors indicate breed
affiliation, each symbol represents an individual. (A). For PCA plot, the x- and y-axes are indicated by the first and second components, respectively,
and the values in parentheses show the percentages of total variance explained. (B). For DAPC plot, the scatterplot shows only the first two linear
discriminants of the analysis.

FIGURE 3
Population structure using 16,345 SNPs for five cattle breeds consisting of 47 individuals. Admixture analysis showing the proportions of ancestral
populations for K = 2, each vertical bar exemplifies an individual.
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Figure 2 presents the result of PCA andDAPC analysis performed
to visualize individual relationships among populations. Individuals
were grouped according to their breed origins. The first and second
component accounted for a total of 23.60% and 13.10%, respectively.
PCA and DAPC showed a low differentiation among the AFB,
Braunvieh, and Simmental populations, while the Brahman and
Gyr herds are clearly separated from the other three populations.
In the PCA a substructure was observed corresponding to samples
from Gyr, from the reference populations. The populations included
in this study come from different selection environments. Brahman
and Gyr individuals have been selected for tropical climates. The
Simmental and Braunvieh groups have been selected in template
environments, while AFB individuals have beenmainly selected under
artificial selection pressure.

A graphic representation of cluster structure analysis is depicted
in Figure 3. Based on the ΔK value, K = 2 was the most optimal
number for the inferred genetic structure of the populations
(Supplementary Figure S1). At K = 2 a considerable source of
variation among cattle breeds was perceptible. Cluster
1 comprised of the Brahman and Gyr breed groups (N =
14 genotypes), whereas cluster 2 consisted of the Braunvieh
Simmental, and AFB cattle groups (N = 33 genotypes). The

Brahman and Gyr populations displayed a separated cluster,
whereas the Braunvieh, and AFB, and Simmental populations
presented similar genetic construction.

A neighbor-joining tree was constructed from SNPs (Figure 4),
displaying bootstrap support greater than 70%. The first group is
composed of fifteen Simmental individuals with 100% bootstrap
support. The second group is composed of nine Braunvieh
individuals with 100% bootstrap support. Nine individuals AFB
composed the third group. In concordance with the principal
coordinate analysis, these groups are together. The fourth group
is composed of nine Braunvieh individuals with 100% bootstrap
support. Five individuals Gyr composed the fifth group. These
groups are together with 100% bootstrap support, also in
agreement with principal coordinate analysis. However, an
individual AFB (TP−027A) was integrated into this group of
Brahman and Gyr with 100% bootstrap support.

4 Discussion

Investigating genetic diversity parameters of populations is
critical for developing future breeding objectives (Notter, 1999).

FIGURE 4
Phylogenetic relationship constructed using a neighbor-joining tree from a dataset of 80,178 SNPs in five breeds. Numbers above the branches
represent bootstrap values, with only values higher than 70% shown.
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Here for the first time, we examined population genetic structure of
a group of animals that are been used as a genetic nucleus in Peru, as
well as a group of PCC (AFB). Our results of Pn, MAF, He, Ho
showed that the populations have a moderate genomic diversity. In
this study, all the average values of MAF recorded in taurine cattle
(i.e., Braunvieh, Simmental, and AFB) were higher than those
recorded in zebu cattle (i.e., Brahman and Gyr). This result
might be due to the low representation of zebuine cattle breeds
in the SNP genotyping array used (Chagunda et al., 2018). Most of
the bovine SNP panels available have been developed of the
sequences of individuals belonging to European bovine breeds
(European Cattle Genetic Diversity Consortium et al., 2006; The
Bovine Hapmap Consortium et al., 2009). This might explain why
the observed polymorphism of our SNP data set was higher in the
Braunvieh, Simmental, and AFB breeds.

Previous studies have shown that breeding practices have a great
effect on reducing genetic diversity, leading to a lower level of genetic
diversity in selected germplasm compared with wild varieties
(Tisdell, 2003; Zenger et al., 2007). Interestingly, our genetic
diversity analysis with the four specialized breeds from the
nucleus herd seems to agree. We observed a significantly higher
genetic diversity level in the AFB group breed than in the specialized
breeds, which is similar from those reported in previous studies
(Giovambattista et al., 2001; Egito et al., 2007; Edea et al., 2015). In
the case of AFB, it showed the highest levels of He and one of the
highest for Ho. For these cattle population, there is a marked effect
due to mating control by breeders, which can certainly play an
important role (Hidalgo et al., 2015; Delgado et al., 2019). Creole
breeds are primarily used in the Peruvian livestock systems to
establish crosses with other species of B. taurus, particularly
Brown Swiss and Simmental in high Andean areas (Primo, 1992;
Quispe, 2016). Considering AFB, the mean value of Ho (0.42)
obtained in this study is lower than that (0.77) reported by
Martínez et al. (2015) in Costa Rica, (0.75) Lirón et al. (2006) in
Argentine and Bolivian Creole Breeds, (0.68) Egito et al. (2007), in
Brazil, (0.67) Ginja et al. (2010) in Portuguese Native Cattle, (0.70)
Acosta et al. (2012) in Cuban cattle breeds. However, most of these
studies are also in creole cattle from Latin America where the values
greatly differ from ours. One explanation for these differences is that
our study was based on SNPmarkers, whereas the other studies used
microsatellite markers. As population genetic statistics can easily be
applied to SNPs because they are often bi-allelic, however, a greater
number of polymorphic loci may be required to match the power of
multi-allelic SSR loci (Guichoux et al., 2011; Laoun et al., 2020).
Also, the reduced Ho of the AFB may be explained on the fact that
these individuals, compared to other local breeds, go through a
process of strict artificial selection as growers always look for fighting
traits. AFB are always part of the traditional bullfight activity of
Arequipa. It should be noted that the Brahman and Gyr breed
presented the lowest levels of He and Ho. This lower level of
heterozygotes is generally interpreted as a deviation from random
mating (Zeng et al., 2013; Lamkey and Edwards, 2015).

Regarding the content of Pn, a study in six breeds including
Simmental, determined an average proportion of polymorphic SNPs
of 79% (Dadi et al., 2012), while in this study was 79.72%. FIS
presented an average value of −0.04, which ranged from 0.03 (AFB)
to −0.07 (Brahman and Braunvieh). So, this negative FIS values could
indicate that the population was in outbreeding (Caballero and

Toro, 2002). In addition, mating could be occurring between
individuals from different populations (Wright, 1965; Chesser,
1991). The FIS value was negative for the studied breeds of the
reproductive herd, where Brahman and Braunvieh had the lowest FIS
values, suggesting an excess of heterozygotes and a lack of
population structure (Tantia et al., 2006). This could be due to
the small sample population size.

According to the AMOVA results (Table 2), the proportion of
genetic variability attributable to the difference variation among
populations, and within individuals was 24.29% and 75.71%,
respectively. These results implied lower genetic differentiation
among breeds than within breeds maintained at EEA Donoso.
Similar studies have reported lower values for variation across
populations (Cañón et al., 2001; Lirón et al., 2006; Egito et al.,
2007). Lirón et al. (2006) reported that 8.8% of the total genetic
variation corresponded to differences between populations (zebu
and taurine breeds), while 91.2% was explained by differences
between and within individuals. Cañón et al. (2001) indicated
that about 7% of the total genetic variation corresponded to
differences between racial groups, while the remaining 93%
corresponded to differences between and within individuals. On
the other hand, Egito et al. (2007) reported a value of 12% for genetic
variation attributable to differences between breed groups. The
higher value obtained in the present study may be linked to the
characteristics of the sampling (Kitada et al., 2021). The AFB breed
group is made up of highly heterogeneous animals, which magnifies
the within-group (within individual) variance compared to the
between-group (among population) variance. Many of these
groups are also highly related to each other (i.e., Gyr-Brahman
pair, Simmental-Braunvieh pair), which is further confirmed in the
population structure analyses. The little degree of variation is
consistent with the FST for AFB-Braunvieh pair (0.08) and AFB-
Simmental pair (0.09).

Table 3 showed that the lowest genetic distance (0.08) was
observed for the AFB and Braunvieh. Similarly, for the AFB and
Simmental breeds the genetic distance was low (0.09). These values
close to zero indicate that these breeds shared their genetic material
through breeding. Likewise, Figure 2 showed that Simmental,
Braunvieh, and AFB grouped closely to each other. In addition,
many individuals of AFB possess traits of Braunvieh and Brown
Swiss as they are also employed for beef and milk production. Also,
concordant to the genetic distance, PCA and DAPC indicated that
Brahman and Gyr are closely related. The share of genetic material
between Brahman and Gyr can be explained as they belong to the
same species, B. indicus. On the contrary, higher genetic distances
were observed between Brahman with 1) Braunvieh (0.37), 2)
Simmental (0.35), 3) and AFB (0.31), indicating some degree of
isolation between these breeds, that is, they are not currently
breeding with one another. This could be because the region
where the AFB samples were collected is located in the southern
parts of the country, where climatic conditions are cold. Hence,
European breeds such as Brown Swiss, Braunvieh, Simmental,
Overo negro, Jersey, etc., are more commonly used in these
regions because of the cold climate, whereas Zebuine breeds,
such as the Brahman and Gyr, are preferably used in the
Amazon region of the country, in the north. Our phylogenetic
reconstruction is in concordance with ADMIXTURE analysis and
genetic distances. We identified that the AFB breed is closer to
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Braunvieh than the Simmental breed and others. Arbizu et al. (2022)
examined the relationship between PCC and other B. taurus with an
analysis of the mitochondrial genome and validated these
relationships, probably influenced by the high introgression and
crossing over. Also, a strong relationship between Gyr and Brahman
breeds was identified.

We analyzed the genetic structure of the AFB cattle by using
SNP markers. This information will be valuable to our farmers as
well as future studies. The results of this study provide some insight
that AFB can become a separate breed in the future. The analysis also
provides evidence for two subgroups within the AFB group
(Figure 4), with one level higher of genetic differentiation than
the other one. Also, this new information of a Peruvian reproductive
cattle herd would offer valuable information to establish a genetic
nucleus herd andmodern breeding programs. In addition, we expect
molecular tools become widely employed in favor of the cattle
industry in Peru.

5 Conclusion

We here determined for the first time the genetic diversity and
population structure of a Peruvian cattle herd using SNP data.
Braunvieh breed possessed the highest genetic diversity while
Brahman the lowest. Most of the variance occurs within
individuals among the five breeds evaluated in this study. A total
of two clusters were identified, showing, as expected, a clear
separation between B. indicus (Brahman and Gyr) and B. taurus
breeds (Braunvieh, AFB and Simmental). Interestingly, the AFB was
placed in a single cluster, providing evidence that this may be
considered a breed as farmers from Arequipa breed their animals
in favor of fighting traits. Additional work is needed to also
characterize other cattle herd of INIA located in San Martin
region. We hope this work will pave the way towards developing
a modern cattle breeding program in Peru.
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