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Abstract: The Guazuma crinita Mart. is a dominant species of great economic importance for the
inhabitants of the Peruvian Amazon, standing out for its rapid growth and being harvested at an
early age. Understanding its vertical growth is a challenge that researchers have continued to study
using different hypsometric modeling techniques. Currently, machine learning techniques, especially
artificial neural networks, have revolutionized modeling for forest management, obtaining more
accurate predictions; it is because we understand that it is of the utmost importance to adapt, evaluate
and apply these methods in this species for large areas. The objective of this study was to build
and evaluate the efficiency of the use of a deep neural network for the prediction of the total height
of Guazuma crinita Mart. from a large-scale continuous forest inventory. To do this, we explore
different configurations of the hidden layer hyperparameters and define the variables according
to the function HT = f (x) where HT is the total height as the output variable and x is the input
variable(s). Under this criterion, we established three HT relationships: based on the diameter at
breast height (DBH), (i) HT = f (DBH); based on DBH and Age, (ii) HT = f (DBH, Age) and based on
DBH, Age and Agroclimatic variables, (iii) HT = f (DBH, Age, Agroclimatology), respectively. In
total, 24 different configuration models were established for each function, concluding that the deep
artificial neural network technique presents a satisfactory performance for the predictions of the total
height of Guazuma crinita Mart. for modeling large areas, being the function based on DBH, Age and
agroclimatic variables, with a performance validation of RMSE = 0.70, MAE = 0.50, bias% = −0.09
and VAR = 0.49, showed better accuracy than the others.

Keywords: deep learning; artificial neural network; total height; forest management

1. Introduction

The Guazuma crinita Mart. (Bolaina Blanca) is characterized as a fast-growing forest
species established in plantations in which it reaches growth maturity by the eighth or
ninth year, being ready for harvesting [1,2]. The wood has a high commercial value and is
used to obtain round and sawn wood for the manufacture of stretchers, boxes, laminates,
toys, matches, handicrafts, plywood, construction and coating of houses and the obtaining
of cellulose for paper, contributing to the livelihood of local farmers [3,4]. According to the
Servicio Nacional Forestal y de Fauna Silvestre [5], there is 8530.76 ha of Bolaina Blanca
plantations in Peru, which represents 503,839.71 m3 of standing trees.

A hypsometric model is generally expressed between the height and diameter rela-
tionship of a tree; however, it has also been shown that the variables of age, basal area, site
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index, number of individuals per hectare, quadratic diameter, diameter and age classifica-
tion, have influence with height [6,7]. It is very common to apply hypsometric modeling
to reduce the costs and time of an inventory, as well as to contribute to the planning and
forecasting of the volumetric production of plantations [8,9].

Deep learning is a type of automatic learning in which the same pattern of an artificial
neural network (ANN) is followed, i.e., an architecture is defined and connections between
them are shown [10]. ANNs often work with a single hidden quantity layer, but when used
larger they are called deep neural networks (DNNs) or deep learning [11]. In other words,
the big difference between ANN and DNN is that the latter model allows for multiple
computations using processing layers to learn data representations with various levels of
abstraction [11,12].

Hyperparameters are defined as parameters whose values control the learning process.
A hyperparameter exploration is performed in order to test various configurations to obtain
a better-performing model. This process is called hyperparameter optimization [13]. Such
optimization can be done manually using empirical rules [14] or also with automated
search [15], to reduce processing time and human effort, increasing productivity and
throughput in scientific studies [16].

DNNs have been used to solve complex problems in the forestry and environmental
area, such as identification of the origin of carbon through macroscopic images [17], to map
Amazonian palm species at the individual tree crown level (ITC) using images RGB [18],
species classification based on terrestrial laser scanning [19], for a rapid and efficient evaluation
of forest damage after an environmental disaster [20]. It has even been shown in various
studies related to forest management that the use of machine learning techniques is more
accurate than mathematical regression techniques in their statistical performance [21–28].

The use of deep learning has not found studies for hypsometric modeling of this
species, either in the Peruvian Amazon territory, this being the main problem when a base
of its adequate configuration is not found to model the height. We consider it extremely im-
portant to understand the development of the DNN with hypsometric modeling, especially
when large areas and a large amount of data from the continuous forest inventory of Bolaina
Blanca are housed. Our hypothesis was that the configuration of the hyperparameters
directly affects the statistical estimates in the hypsometric modeling of the Bolaina Blanca.
The objective of this study was to evaluate the efficiency of using a deep learning neural
network to predict the total height of Guazuma crinita Mart. from a large-scale continuous
forest inventory, having specific objectives: (i) to configure and train the neural network
and (ii) to evaluate the performance of the functions for total height prediction.

2. Material and Method
2.1. Study Area and Database

The Guazuma crinita Mart. forest plantations are located between parallels 9◦22′0.32′ ′

and 9◦41′52.60′ ′ S and meridians 74◦51′03.18′ ′ and 75◦02′33.18′ ′ W, between the districts of
Puerto Inca and Yuyapichis, province of Puerto Inca, department of Huánuco, in the central
Amazonian of Peru (Figure 1). The database comes from continuous forest inventory
plots with measurements taken in the period 2009 to 2016. Data from 626 permanent
measurement plots (PPM) were used, rectangular in shape randomly distributed with
dimensions from 403 to 1509 m2, with a total of 135,016 measurements equivalent to an
area of 9834 hectares, with plot information: number, area, age, number of trees per plot,
diameter at breast height measured at 1.3 m height (DBH) and total height (HT), measured
with caliper and suunto hypsometer, respectively. Table 1 shows their descriptive statistics
of dendrometric and agroclimatological variables.
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Figure 1. Location of the study and the forest plantations area of Guazuma crinita Mart. (A) in the
Province of Puerto Inca (B), Department of Huánuco (C), Peruvian Amazon.

Table 1. Descriptive statistics of the dendrometric and agroclimatic variables of the Guazuma crinita
Mart. in the Peruvian Amazon.

Descriptive Statistics

Dendrometric Mean Minimum Maximum Variance Std.Dev. Coef.Var.

Age (years) 2.56 0.40 7.30 1.63 1.28 49.92
DBH (cm) 10.70 0.50 29.60 20.22 4.50 42.01
HT (m) 11.05 3.00 25.82 22.63 4.76 43.03

Agroclimatic
Surface Pressure (kPa) 97.52 97.47 97.56 0.00 0.03 0.03
Temperature at 2 Meters (◦C) 26.98 26.40 28.47 0.45 0.67 2.49
Specific Humidity at 2 Meters (g/kg) 16.08 15.01 17.15 0.47 0.68 4.25
Relative Humidity at 2 Meters (%) 73.07 63.00 78.31 23.92 4.89 6.69
Wind Speed at 2 Meters (m/s) 0.06 0.05 0.09 0.00 0.02 29.51
Surface Soil Wetness 0.61 0.50 0.70 0.00 0.06 9.73
Temperature at 2 Meters Maximum (◦C) 39.10 38.09 39.73 0.45 0.67 1.71
Temperature at 2 Meters Minimum (◦C) 18.29 17.33 19.24 0.40 0.63 3.45
Profile Soil Moisture 0.66 0.62 0.72 0.00 0.03 4.39
Root Zone Soil Wetness 0.65 0.62 0.72 0.00 0.03 4.67
Wind Speed at 2 Meters Maximum (m/s) 0.66 0.55 0.73 0.00 0.07 9.89
Wind Speed at 10 Meters Maximum (m/s) 2.18 2.04 2.30 0.01 0.11 5.14
Wind Speed at 10 Meters Minimum (m/s) 0.02 0.01 0.03 0.00 0.01 37.80
Precipitation Corrected (mm/day) 3.01 1.75 4.37 0.57 0.76 25.12
Wind Speed at 10 Meters Range (m/s) 2.16 2.01 2.27 0.01 0.11 5.02
All Sky Surface UVA Irradiance (W/m2) 11.71 11.40 12.03 0.05 0.22 1.89
All Sky Surface UVB Irradiance (W/m2) 0.35 0.34 0.36 0.00 0.01 2.65
All Sky Surface Shortwave
DownwardIrradiance (MJ/m2/day) 16.19 15.63 16.56 0.12 0.35 2.16

Clear Sky Surface Shortwave
DownwardIrradiance (MJ/m2/day) 24.07 23.81 24.23 0.03 0.18 0.73

All Sky Surface PAR Total (W/m2) 87.58 84.65 89.74 3.28 1.81 2.07
Clear Sky Surface PAR Total (W/m2) 128.36 126.02 129.62 1.48 1.22 0.95
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The plantations are distributed at altitudes that vary between 180 and 500 m above sea
level, the average annual temperature is 27 ◦C, the average annual relative humidity is 85%
and the annual precipitation varies between 2000 and 3000 mm, with greater intensity of
precipitation between the months of November to March [29]. According to Holdridge [30]
life zone classification, the study area is located in a region covered by tropical humid
forest (bh-T), very humid tropical forest (bmh-T), and very humid transitional tropical
forest (bmh-TT).

In this study we used agroclimatic variables extracted from the NASA Prediction
Of Worldwide Energy Resources website: https://power.larc.nasa.gov/ (accessed on
12 November 2021). Through the coordinates of each plot from 2009 to 2016, using the
annual average in the predictions. The downloaded variables were: Surface Pressure (kPa),
Temperature at 2 Meters (◦C), Specific Humidity at 2 Meters (g/kg), Relative Humidity at
2 Meters (%), Wind Speed at 2 Meters (m/s), Surface Soil Wetness, Temperature at 2 Meters
Maximum (◦C), Temperature at 2 Meters Minimum (◦C), Profile Soil Moisture, Root Zone
Soil Wetness, Wind Speed at 2 Meters Maximum (m/s), Wind Speed at 10 Meters Maximum
(m/s), Wind Speed at 10 Meters Minimum (m/s), Precipitation Corrected (mm/day), Wind
Speed at 10 Meters Range (m/s), All Sky Surface UVA Irradiance (W/m2), All Sky Surface
UVB Irradiance (W/m2), All Sky Surface Shortwave Downward Irradiance (MJ/m2/day),
Clear Sky Surface Shortwave Downward Irradiance (MJ/m2/day), All Sky Surface PAR
Total (W/m2) and Clear Sky Surface PAR Total (W/m2).

2.2. Variable Input, Output, and Data Splitting in Training and Validation

For model fitting, we used the technique of deep artificial neural networks using
the H20 pack [31] in R [32]. We set the function HT = f (x), where HT is the output
variable and x is the input variable(s). Under this criterion, we established three HT
relationships: depending on the DBH variable, (i) HT = f (DBH); based on DBH and Age,
(ii) HT = f (DBH, Age) and based on DBH, Age and agroclimatic variables, (iii) HT = f (DBH,
Age, Agroclimatology), respectively. All downloaded agroclimatic variables were included
in the third function. These functions were trained separately, they were configured with
different hyperparameters and their performance was compared. In total, we performed
72 training runs, i.e., 24 training models for each HT = f (x) function set in this study.

The data was standardized and randomly separated establishing 70% of the data for
Training and 30% for Validation.

2.3. Hyper-Parameter Tuning
2.3.1. Layers, Units, and Activation Function

Their architectures had one input layer, two, three, and five hidden layers and one
output layer. The numbers of neurons or units in the hidden layer were 10:10 (Figure 2A),
10:5 (Figure 2B), 10:5:2 (Figure 2C), 50:50 (Figure 2D), 50:25 (Figure 2E), 50:25:5 (Figure 2F),
10: 5:2:5:10 (Figure 2G), and 50:25:5:25:50 (Figure 2H).

https://power.larc.nasa.gov/


Forests 2022, 13, 697 5 of 15

Forests 2022, 13, x FOR PEER REVIEW 6 of 16 
 

 

( )
[ ]

[ ]
( )

2 2 2
1

1

2 2 2
1

1

1 ;  Accumulate Gradient

;  Compute Update

1 ;  Accumulate Updates

;  Apply Update

tt t

t
t t

t

tt t

t t t

E g E g g

RMS
g

RMS g

E E

ρ ρ

θ
θ

θ ρ θ ρ θ

θ θ θ

−

−

−

+

   = + −    
Δ

Δ = − 



   Δ = Δ + − Δ    
= + Δ   

(7)

where tθ
 denoting the parameters at the t-th iteration, tg  is the compute gradient, t 

is the time and RMS is the root mean squared error. For our study, the learning rate time 
decay factor (rho) was 0.99 and the learning rate time smoothing factor (epsilon) was 1 × 
10−8. 

 
Figure 2. Number of neurons or units in the hidden layer used for hypsometric modeling of the 
Guazuma crinita Mart. in the Peruvian Amazon. The numbers of neurons in the hidden layer were 
10:10 (A), 10:5 (B), 10:5:2 (C), 50:50 (D), 50:25 (E), 50:25:5 (F), 10: 5:2:5:10 (G), and 50:25:5:25:50 (H). 

2.4. Model Performance  
The estimates were analyzed according to [8,34]. The estimates of the training and 

testing data were with the statistical variables of Root Mean Squared Error, RMSE (Equa-
tion (8)), and Mean Absolute Error, MAE (Equation (9)). For testing data, we increased 
bias% (Equation (10)) and the variance error, VAR (Equation (11)). Likewise, percentage 

Figure 2. Number of neurons or units in the hidden layer used for hypsometric modeling of the
Guazuma crinita Mart. in the Peruvian Amazon. The numbers of neurons in the hidden layer were
10:10 (A), 10:5 (B), 10:5:2 (C), 50:50 (D), 50:25 (E), 50:25:5 (F), 10: 5:2:5:10 (G), and 50:25:5:25:50 (H).

The Tanh (Equation (1)), Rectified Linear (Equation (2)), and Maxout (Equation (3))
activation functions were used in the hidden layer, while in the output layer we use the
Linear (Equation (4)) activation function for all cases.

f (α) =
eα − e−α

eα + e−α
; f (.) ∈ [−1, 1] (1)

f (α) = max(0, α); f (.) ∈ R+ (2)

f (.) = max(wixi + b); f (.) ∈ [−∞, 1]; rescale if max f (.) ≥ 1 (3)

f (α) = α (4)

where f is the function that represents the non-linear activation used in the entire neural
network, b is the bias for the neuron activation threshold, xi and wi denote the input values
of the unit or neuron and their weights; α denotes the weighted combination:

α = ∑n
j=1 wixi + b.
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2.3.2. Distribution and Loss Functions

The Gaussian distribution function was specified as equivalent to wMSE (weighted
mean squared error) (Equation (5)) as it was, our numerical response variable and the loss
function chosen was quadratic (Equation (6)):

f (.) = ω(y− f )2 (5)

where y is a true response, f is a predicted response, and ω is weighted.

L(W, B
∣∣∣∣j) = 1

2

∣∣∣∣‖t(j) − o(j)‖
2
2 (6)

where t(j) and o(j) are the predicted and actual output; j and W is the collection {Wi}1:N−1:
Wi denotes the weight matrix connecting layers i and i + 1 for a network of N layers; B is
the collection {bi}1:N−1: bi denotes the column vector of biases for layer i + 1.

2.3.3. Optimization Algorithm, Regularization, Epoch, and Batch Size

The optimization algorithm used in this study was the adaptive learning rate
ADADELTA (Equation (7)) [33]. The mini-batch was of size 1, the number of epochs
was 300, and the type of regularization was with the early stop system, with 5 stop rounds,
stop tolerance of 0.001, and MSE (mean square error) stop metric.

E
[
g2]

t = ρE
[
g2]

t−1 + (1− ρ)g2
t ; Accumulate Gradient

∆θt = −
RMS[∆θ]t−1

RMS[g]t
gt; Compute Update

E
[
∆θ2]

t = ρE
[
∆θ2]

t−1 + (1− ρ)∆θ2
t ; Accumulate Updates

θt+1 = θt + ∆θt; Apply Update

 (7)

where θt denoting the parameters at the t-th iteration, gt is the compute gradient, t is the time
and RMS is the root mean squared error. For our study, the learning rate time decay factor
(rho) was 0.99 and the learning rate time smoothing factor (epsilon) was 1 × 10−8.

2.4. Model Performance

The estimates were analyzed according to [8,34]. The estimates of the training
and testing data were with the statistical variables of Root Mean Squared Error, RMSE
(Equation (8)), and Mean Absolute Error, MAE (Equation (9)). For testing data, we increased
bias% (Equation (10)) and the variance error, VAR (Equation (11)). Likewise, percentage
graphs of cases by percentage relative error, RE% (Equation (12)) were also interpreted.
Figure 3 shows the methodological flowchart used in this study.

RMSE =

√
n−1

n

∑
i=1

(Yi − Ŷi)2 (8)

MAE =

(
n−1

n

∑
i=1

∣∣Yi − Ŷi
∣∣) (9)

Bias% =
Bias

Y
× 100; Bias =

n
∑

i=1
Yi − Ŷi

n
(10)

VAR =
∑ (bias− (Yi − Ŷi))

2

n− 1
(11)

RE% =
Yi − Ŷi

Y
× 100 (12)
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where n = the number of observations for the measurer, Yi = observed total height valuei,
Ŷi = predicted total height valuei, and Y = mean of observed total height valuei.
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The data were processed with the following computer features:

- Operating System: Windows 10 Pro 64-bit
- CPU: Intel Core i3 6006U @ 2.00 GHz- Skylake-U/Y 14 nm Technology
- RAM: 12.00 GB Dual-Channel Unknown @ 1064MHz (15-15-15-35)
- Motherboard: LENOVO LNVNB161216 (U3E1)
- Graphics: Generic PnP Monitor (1366 × 768@64 Hz)
- Storage: 465 GB Western Digital WDC WDS500G2B0B-00YS70 (SATA (SSD).

3. Results
3.1. Training Status

The maximum processing time for each model was 50 s. In Table 2 we can observe
the status and architecture of each trained model according to each function. The trained
models it was not necessary to complete the complete training epochs (300 epoch).

Table 2. State and architecture of each model trained according to the three functions evaluated for
the predictions of the total height of the Guazuma crinita Mart. trees in the Peruvian Amazon.

Model
Hidden Layer Epochs/Training Samples/Weights and Biases

Total Layers
Activation
Functions Layers/Units HT = f (DBH) HT = f (DBH, Age) HT = f (DBH, Age,

Agroclimatology)

Model 1 Tanh 2(10:10) 34.9/3,300,864/151 35/3,307,955/161 17.4/1,647,234/371 4
Model 2 Rectifier 2(10:10) 89.9/8,496,703/151 60.3/5,700,023/161 30/2,835,773/371 4
Model 3 Maxout 2(10:10) 65/6,145,912/291 41/3,872,041/311 25.1/2,369,990/731 4
Model 4 Tanh 2(10:5) 64.5/6,100,250/91 48.7/4,599,721/101 17.1/1,614,741/311 4
Model 5 Rectifier 2(10:5) 195.7/18,497,950/91 159.8/15,100,404/101 30.4/2,869,197/311 4
Model 6 Maxout 2(10:5) 51.7/4,882,319/176 62.4/5,897,233/196 25/2,358,105/616 4
Model 7 Tanh 3(10:5:2) 70.9/6,698,582/100 73/6,901,805/110 32.9/3,108,612/320 5
Model 8 Rectifier 3(10:5:2) 92.1/8,702,945/100 148.1/14,000,065/110 30.6/2,892,184/320 5
Model 9 Maxout 3(10:5:2) 85.7/8,097,387/197 77/7281,256/217 21.7/2,051,691/637 5
Model 10 Tanh 2(50:50) 5.4/509,363/2751 6.7/637,904/2801 7.9/744,223/3851 4
Model 11 Rectifier 2(50:50) 44.5/4,207,558/2751 27.7/2,615,333/2801 11.6/1,093,767/3851 4
Model 12 Maxout 2(50:50) 10.7/1,007,812/5451 10.7/1,008,106/5551 10.8/1,023,225/7651 4
Model 13 Tanh 2(50:25) 9.7/917,479/1451 13.2/1,251,731/1501 5.7/542,308/2551 4
Model 14 Rectifier 2(50:25) 37.5/3,547,655/1451 23.9/2,260,683/1501 12/1,132,858/2551 4
Model 15 Maxout 2(50:25) 13/1,230,927/2876 9.4/885,209/2976 11/1,035,577/5076 4
Model 16 Tanh 3(50:25:5) 7.9/748,206/1561 8.9/843,398/1611 8.3/783,786/2661 5
Model 17 Rectifier 3(50:25:5) 41.7/3,939,088/1561 23.6/2,226,682/1611 20/1,893,917/2661 5
Model 18 Maxout 3(50:25:5) 23.4/2,215,252/3116 9.6/907,092/3216 9.1/857,062/5316 5
Model 19 Tanh 5(10:5:2:5:10) 54/5,103,702/183 53/5,009,328/193 44.4/4,197,664/403 7
Model 20 Rectifier 5(10:5:2:5:10) 160.8/15,202,054/183 65.6/6,200,261/193 39.6/3,738,971/403 7
Model 21 Maxout 5(10:5:2:5:10) 42.3/4,001,607/355 35.2/3,328,508/375 23.7/2,240,775/795 7
Model 22 Tanh 5(50:25:5:25:50) 10.1/955,656/3056 8/760,293/3106 6.3/598,638/4156 7
Model 23 Rectifier 5(50:25:5:25:50) 29.3/2,766,703/3056 35.7/3,369,835/3106 12.3/1,160,523/4156 7
Model 24 Maxout 5(50:25:5:25:50) 11.3/1,072,656/6061 13.9/1,309,262/6161 10.5/996,059/8261 7

The networks trained from the HT = f (DBH) function obtained between 5.4 and
195.7 training epochs, 509,363 and 1,8497,950 training samples, 91 and 6061 weights and
bias. The HT = f (DBH, Age) function was obtained between 6.7 and 158.9 training epochs,
637,904 and 15,100,404 training samples, 101 and 6161 weights and biases. The HT = f (DBH,
Age, Agroclimatology) function was obtained between 5.7 and 44.4 training times, 542,308
and 4,197,664 training samples, 311 and 8261 weights and biases.

Complete training status of each model and type of function evaluated used to predict
the total height of Guazuma crinita Mart. in the Peruvian Amazon, it can be seen in Table S1.

3.2. Model Validation Performance

We statistically analyzed each trained model with its respective function, evaluating
the performance of RMSE, MAE for training, and we increased two more parameters for
validation (Table 3). In general, all models with their responsive function showing a good
performance. The HT = f (DBH) function showed a result that varies 1.26 ≤ RMSE ≤ 2.07
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and 0.93 ≤ MAE ≤ 1.79 for training and 1.26≤ RMSE ≤ 2.06, 0.93 ≤ MAE ≤ 1.78,
−1.84 ≤ Bias% ≤ 10.95 and 1.44 ≤ VAR ≤ 2.78 for validation. The function HT = f (DBH,
Age) showed a result that varies 0.70 ≤ RMSE ≤ 0.78 and 0.49 ≤MAE ≤ 0.57 for training
and 0.71 ≤ RMSE ≤ 0.78, 0.49 ≤MAE ≤ 0.57, −1.24 ≤ Bias% ≤ 2.32, 0.49 ≤ VAR ≤ 0.60
for validation. The function HT = f (DBH, Age, Agroclimatology) showed a result that
varies 0.70 ≤ RMS E≤ 0.79 and 0.50 ≤MAE ≤ 0.54 for training and 0.70 ≤ RMSE ≤ 0.79,
0.50 ≤MAE ≤ 0.55, −0.23 ≤ Bias% ≤ 2.27 and 0.48 ≤ VAR ≤ 0.57 for validation.

Table 3. Performance of the statistics of each model trained and function evaluated, both for training
and for validation in the total height predictions of the Guazuma crinita Mart. in the Peruvian Amazon.

HT = f (DBH) HT = f (DBH, Age) HT = f (DBH, Age, Agroclimatology)

Train Validation Train Validation Train Validation

Model RMSE MAE RMSE MAE Bias% VAR RMSE MAE RMSE MAE Bias% VAR RMSE MAE RMSE MAE Bias% VAR

Model 1 1.42 1.19 1.43 1.2 6.04 1.61 0.78 0.57 0.77 0.57 −0.63 0.6 0.76 0.52 0.76 0.52 1.67 0.54
Model 2 1.46 1.23 1.47 1.24 6.32 1.67 0.76 0.53 0.75 0.52 0.84 0.55 0.76 0.52 0.76 0.52 1.11 0.56
Model 3 1.38 1.13 1.4 1.14 4.65 1.68 0.75 0.52 0.74 0.51 1.18 0.53 0.76 0.53 0.76 0.53 2.23 0.51
Model 4 1.42 1.17 1.44 1.19 4.5 1.82 0.74 0.51 0.73 0.51 0.24 0.54 0.75 0.52 0.76 0.52 1.52 0.55
Model 5 1.39 1.14 1.41 1.16 5.74 1.58 0.78 0.54 0.77 0.53 2.02 0.55 0.77 0.53 0.76 0.53 0.85 0.57
Model 6 1.4 1.15 1.42 1.17 5.38 1.66 0.77 0.54 0.76 0.53 2.32 0.52 0.77 0.54 0.76 0.54 1.99 0.54
Model 7 1.32 1.05 1.32 1.06 2.78 1.66 0.75 0.51 0.75 0.51 1.49 0.54 0.73 0.51 0.74 0.51 1.3 0.52
Model 8 1.38 1.12 1.39 1.13 4.81 1.64 0.72 0.5 0.71 0.5 1.02 0.5 0.78 0.54 0.77 0.54 1.44 0.56
Model 9 1.4 1.15 1.43 1.17 5.43 1.67 0.75 0.53 0.75 0.52 1.85 0.52 0.73 0.51 0.74 0.51 1.02 0.53

Model 10 1.29 1.04 1.29 1.04 3.38 1.54 0.73 0.53 0.73 0.53 1.52 0.5 0.74 0.52 0.74 0.52 1.52 0.52
Model 11 1.43 1.19 1.44 1.19 5.43 1.71 0.73 0.5 0.74 0.51 1.21 0.52 0.75 0.54 0.75 0.53 2.06 0.51
Model 12 1.32 1.1 1.33 1.11 5.08 1.46 0.72 0.52 0.71 0.51 0.58 0.5 0.73 0.53 0.73 0.53 1.05 0.52
Model 13 1.31 1.04 1.33 1.05 2.96 1.66 0.72 0.51 0.72 0.51 1.07 0.51 0.79 0.54 0.77 0.54 2.27 0.54
Model 14 1.34 1.09 1.36 1.1 4.45 1.61 0.74 0.52 0.75 0.53 0.46 0.55 0.78 0.54 0.79 0.54 2.03 0.57
Model 15 1.39 1.14 1.39 1.13 5.43 1.56 0.72 0.51 0.72 0.51 1.67 0.49 0.7 0.5 0.7 0.5 −0.09 0.49
Model 16 1.28 1.04 1.29 1.04 2.63 1.58 0.72 0.52 0.72 0.51 0.7 0.51 0.72 0.5 0.73 0.5 1.05 0.52
Model 17 1.41 1.15 1.42 1.15 5.24 1.68 0.77 0.52 0.78 0.53 1.87 0.56 0.78 0.54 0.79 0.55 2.05 0.57
Model 18 1.31 1.08 1.34 1.1 5.32 1.44 0.73 0.55 0.74 0.55 1.06 0.53 0.75 0.52 0.75 0.52 1.04 0.54
Model 19 2.07 1.79 2.06 1.78 10.95 2.78 0.75 0.53 0.75 0.53 0.52 0.56 0.74 0.52 0.73 0.51 0.31 0.53
Model 20 1.31 1.04 1.33 1.04 3.2 1.63 0.74 0.53 0.74 0.52 0.61 0.54 0.75 0.52 0.73 0.51 0.83 0.53
Model 21 1.44 1.21 1.43 1.2 5.63 1.67 0.77 0.57 0.77 0.57 −1.24 0.57 0.73 0.52 0.72 0.52 1.18 0.51
Model 22 1.28 0.96 1.28 0.95 −0.04 1.63 0.7 0.5 0.71 0.5 0.61 0.5 0.74 0.52 0.74 0.51 0.78 0.54
Model 23 1.41 1.13 1.4 1.12 4.9 1.67 0.72 0.49 0.72 0.49 1.25 0.5 0.73 0.52 0.72 0.52 −0.23 0.52
Model 24 1.26 0.93 1.26 0.93 −1.84 1.55 0.76 0.52 0.74 0.52 2.03 0.5 0.72 0.5 0.72 0.5 1.73 0.48

To recognize the model of each function, we not only analyze the forecast Key Per-
formance Indicator (KPI). We also analyze the residual plot; that is, the relative error in
percentage between the predicted values (Figure 4) and the bias-variance tradeoff (Figure 5).
According to the results, model 24 of the function HT = f (DBH) with RMSE = 1.26 and
MAE = 0.93, model 12 of the function HT = f (DBH, Age) RMSE = 0.71 and MAE = 0.51, and
model 15 of the function HT = f (DBH, Age, Agroclimatology) RMSE = 0.70 and MAE = 0.50,
present a better performance than the others.



Forests 2022, 13, 697 10 of 15Forests 2022, 13, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 4. Residual graph in relation to the predicted total height for the hypsometric modeling of 
the trees of Guazuma crinita Mart. in the Peruvian Amazon, for each trained model and based on the 
three study functions: HT = f(DBH), HT = f(DBH, Age) and HT = f(DBH, Age, Agroclimatology). 

Figure 4. Residual graph in relation to the predicted total height for the hypsometric modeling of
the trees of Guazuma crinita Mart. in the Peruvian Amazon, for each trained model and based on the
three study functions: HT = f (DBH), HT = f (DBH, Age) and HT = f (DBH, Age, Agroclimatology).



Forests 2022, 13, 697 11 of 15Forests 2022, 13, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 5. Graph of the relationship between bias and variance for the hypsometric modeling of 
Guazuma crinite Mart. trees in the Peruvian Amazon, showing with greater emphasis the best trained 
model for each of the three study functions: HT = f(DBH), HT = f(DBH, Age) and HT = f(DBH, Age, 
Agroclimatology). 

4. Discussion 
4.1. Training Status for the Prediction of the Total Height of Bolaina Blanca 

All the trained models did not need to complete the 300 number of epochs to con-
verge the weights, because thanks to the regularization of early stopping the training of 
the models stopped as they did not present improvements in the validation metric, this 
method is not very intrusive and minimizes established metric across epochs [35], how-
ever stopping too early can enlarge bias and reduce variance, just as stopping too late can 
reduce bias and enlarge variance [36], that is why the importance of performing a hy-
perparameter optimization search with several trainings and observing the variance and 
bias compensation, adapting it for each type of problem [37]. In our study, model 5 of the 
HT = f(DBH) function needed the greatest number of epochs to converge the weights, with 
195.7 epochs, and model 10 of the HT = f(DBH) function needed the least amount of 
epochs. to converge the weights with 5.4 epochs, which leads to a greater and lesser pro-
cess of training time, respectively. However, model 24 of the function HT = f(DBH), model 
12 of the function HT = f(DBH, Age) and model 15 of the function HT = f(DBH, Age, Ag-
roclimatology) with 11.3, 10.7 and 11 number of epochs, respectively, present a better per-
formance in their statistical evaluations than the rest (Table 3). Regarding its typology of 
number of neurons, the best networks of each function were 2 (50:50), 5 (50:25:5:25:50), 
and 2 (50:50), respectively, this is relatively dependent on In each study, in case of pre-
senting too much information, more neurons will be needed to converge the weights [38] 
and more hidden layers in the model will be more complex or deep. The hidden layer 

Figure 5. Graph of the relationship between bias and variance for the hypsometric modeling of
Guazuma crinite Mart. trees in the Peruvian Amazon, showing with greater emphasis the best trained
model for each of the three study functions: HT = f (DBH), HT = f (DBH, Age) and HT = f (DBH,
Age, Agroclimatology).

4. Discussion
4.1. Training Status for the Prediction of the Total Height of Bolaina Blanca

All the trained models did not need to complete the 300 number of epochs to converge
the weights, because thanks to the regularization of early stopping the training of the mod-
els stopped as they did not present improvements in the validation metric, this method is
not very intrusive and minimizes established metric across epochs [35], however stopping
too early can enlarge bias and reduce variance, just as stopping too late can reduce bias
and enlarge variance [36], that is why the importance of performing a hyperparameter
optimization search with several trainings and observing the variance and bias compensa-
tion, adapting it for each type of problem [37]. In our study, model 5 of the HT = f (DBH)
function needed the greatest number of epochs to converge the weights, with 195.7 epochs,
and model 10 of the HT = f (DBH) function needed the least amount of epochs. to converge
the weights with 5.4 epochs, which leads to a greater and lesser process of training time,
respectively. However, model 24 of the function HT = f (DBH), model 12 of the function
HT = f (DBH, Age) and model 15 of the function HT = f (DBH, Age, Agroclimatology)
with 11.3, 10.7 and 11 number of epochs, respectively, present a better performance in
their statistical evaluations than the rest (Table 3). Regarding its typology of number of
neurons, the best networks of each function were 2 (50:50), 5 (50:25:5:25:50), and 2 (50:50),
respectively, this is relatively dependent on In each study, in case of presenting too much
information, more neurons will be needed to converge the weights [38] and more hidden
layers in the model will be more complex or deep. The hidden layer activation function
of the best performing models was maxout, the advantage of this hidden layer activation
function is that the network learns the relationship between the hidden units and also the
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activation function of each hidden unit [35] but doubles the number of parameters for each
neuron, which leads to a high total number of parameters [11], as shown in Table 2, the
increase in the weights of the training used. This maxout function was initially presented
as a natural companion using dropout to train convolutional networks, but studies have
also been carried out without dropout as a substitute for the sigmoidal function and it has
even been tested to solve regression problems, producing good results [39]. Although it
is true, until the completion of this manuscript, that deep learning techniques have not
been used for Bolaina Blanca tree height predictions, many studies have been conducted in
other species using classical artificial neural network (ANN) techniques in other species,
i.e., with a single hidden layer, in a large part of all these studies have been used with
sigmoidal activation function, such as the hyperbolic and sigmoid tangent, obtaining satis-
factory results [7,40–42]. The processing time of the modeling functions depends on the
characteristics of the computer and is relative, however, the execution of our configurations
for the height mode does not require a high demand on the characteristics of the computer
from the user.

4.2. Growth and Estimation of the Total Height of Bolaina Blanca

In Peru, forestry and forest management of the species of Guazuma crinita Mart. It has
been extensively studied since 1992 by Vidaurre and Héctor [43], evaluating its growth
and the optimal sites for the development of the species. Subsequently, its economic
importance is studied [44], becoming the dominant species for the sustenance of farmers
in the Peruvian Amazon, initially opening up to a series of investigations, such as its
geographical variation in its growth and wood density [45], modeling of its production [46].
However, it was not until 2018 that the total height of the species was modeled for the
first time by Elera Gonzáles [47] in the Peruvian Amazon, in which she used regression
techniques applying six hypsometric models, obtaining as a result of the performance of
the models a range of 1.86 ≤ RMSE ≤ 1.93 and 1.44 ≤ MAE ≤ 1.52, it should be noted
that these hypsometric models had a relationship of total height between DBH, DBH
dominant and Age. In our study using a DNN, it exceeds the statistical performances
(Table 3) and it is very likely that it also exceeds when ANN techniques are used, for
smaller areas. When we analyzed the best configurations obtained in our study, the
relationship between height and diameter, HT = f (DBH), the RMSE result was 1.26 (Model
24). The performance increases when we increase the relation between the DBH and age,
HT = f (DBH, Age) with RMSE = 0.71 (Model 12) and even more when it is related to
agroclimatic variables, HT = f (DBH, Age, Agroclimatology), with RMSE = 0.70 (Model
15). As we can see, obtaining a relationship between diameter and height in this species
is relatively complex using regression techniques, and could even worsen if biased data
were used, especially from inventories of plantation areas that have not received uniform
forest management. The inclusion of climatological variables could bias the modeling for
the prediction of the total height of the species (Figure 5), these directly influence decision-
making for forest planning, such as silvicultural treatments, land acquisition, and genotype
selection [48], in which various studies have shown better performance using agroclimatic
variables, especially for growth and production models in eucalyptus plantations [49–52].

The models used in this study are efficient, both statistically and practically, as we
highlight a specific configuration for each function used. We developed three functions to
be adapted to different areas of the Peruvian Amazon, according to the database of each
community. As the first function, we use only the diameter as an independent variable,
being able to be considered as a guide for local communities with smaller-scale production,
where plantations are not monitored (age or other variables of the forest mass). The
second and third functions are for companies or cooperatives with medium or large-scale
plantations, where permanent monitoring is carried out.

Extrapolation beyond the levels of the predictor variables, for example, dbh, will
always have some risk, so the application to values outside the ranges observed in the
study requires caution on the part of the reader in the application of the functions. However,
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although it may be a limitation, the range observed in the data covers a very large range
of occurrences of values in the predictor variables, resulting in a great potential for the
use of the proposed models. The study is a great contribution to the scientific community,
farmers, and companies dedicated to the modeling and production of Guazuma crinita Mart.
in the Peruvian Amazon.

5. Conclusions

The deep artificial neural network technique presents satisfactory performance for
predictions of the total height of Guazuma crinite Mart. in modeling large areas. In general,
all the variables used to influence the predictions. However, the addition of the agroclimatic
variables together with the diameter at breast height and age have shown better accuracy
than the others. Our hyperparameter configuration proposal (Model 24—HT = f (DBH),
Model 12—HT = f (DBH, Age) and Model 15—HT = f (DBH, Age, Agroclimatology)) present
the best performance and can be adapted to other forest management problems using a
large amount of data. Likewise, we recommend carrying out studies with data from pre-cut
inventories and with the addition of categorical variables.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.339
0/f13050697/s1, Table S1: Training status of each model and type of function evaluated used to predict the
total height of Guazuma crinita Mart. in Peruvian amazon.
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