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RESEARCH

Feeding a constantly increasing world population of 9.1 billion 
in year 2050, which is ~30% above today’s population, will 

require increasing food production by 70% (FAO, 2009). This 
challenge can be addressed by employing plant breeding, with 
disease resistance breeding as a crucial component (Miedaner and 
Korzun, 2012). Alternative approaches for resistance breeding 
are needed, since there are increasing numbers of infectious crop 
diseases caused by fungi and oomycetes (Gawehns et al., 2013). 
Plant breeders have used germplasm resources for breeding based 
on assumptions and observations that they possess resistances to 
a variety of diseases. Therefore, germplasm characterization is 
of great importance to identify accessions with sufficient levels 
of disease resistance to improve yields, because resistance genes 
can be introgressed from wild species into elite varieties ( Jansky, 
2000; Gawehns et al., 2013; Piquerez et al., 2014).

A common method to identify disease-resistant accessions in 
germplasm collections is to screen genebank accessions exposed 
to the pathogen of interest in a greenhouse or field trial. However, 
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ABSTRACT
Plant scientists make inferences and predic-
tions from phylogenetic trees to solve scientific 
problems. Crop losses due to disease damage 
is an important problem that many plant breed-
ers would like to solve, so the ability to predict 
traits like disease resistance from phylogenetic 
trees derived from diverse germplasm would 
be a significant approach to facilitate culti-
var improvement. Alternaria leaf blight (ALB) is 
among the most devastating diseases of car-
rots (Daucus spp., Apiaceae) worldwide. Thus, 
new approaches to identify resistant germ-
plasm to this disease are needed. In a study of 
106 accessions of wild and cultivated Daucus 
and related genera, we determined plant height 
is the best explanatory variable to predict ALB 
resistance using a phylogenetic linear regres-
sion model. Using the estimated area under the 
disease progress curve, the most resistant spe-
cies to ALB were the non-carrot relative Ammi 
visnaga (L.) Lam. and the wild carrot relative D. 
crinitus Desf. A permutation tail probability test 
was conducted considering phylogenetic signal 
to evaluate the strength of association between 
the Daucus phylogeny and ALB resistance. We 
found that species belonging to clade A, which 
includes carrots and other Daucus possessing 
2n = 18, 20, or 22 chromosomes, are slightly 
more resistant to ALB than members of other 
clades of the Daucus phylogeny.
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limitations exist, such as limited labor or experimental 
plots (Endresen, 2010). Other approaches, such as associa-
tion studies between the trait of interest and ecogeographic 
factors, have been used to select germplasm of interest with 
varying levels of success. For example, Peeters et al. (1990) 
explored the association between salt tolerance and eco-
geography to predict performance, obtaining only a weak 
association between these factors. Similarly, Hijmans et 
al. (2003) used a general linear model regression analy-
sis to determine the association between frost tolerance 
of wild potatoes (Solanum tuberosum L.) with taxonomic, 
geographic, and ecogeographic factors, finding a strong 
association between frost tolerance and species, but that 
temperature at the accession collection site was a weak 
predictor of frost tolerance. Inconsistent and weak asso-
ciations were also obtained between resistance to white 
mold [caused by Sclerotinia sclerotiorum (Lib.) de Bary] and 
ecogeography of collecting sites from 34 species of wild 
potato ( Jansky et al., 2006). On the other hand, Endresen 
et al. (2011) investigated predictive association between 
biotic stresses and ecogeographic data for wheat (Triticum 
aestivum L.) and barley (Hordeum vulgare L.) landraces, con-
cluding that ecogeographic distribution of resistance stem 
rust (caused by Puccinia graminis subsp. graminis Pers.:Pers.) 
in wheat and net blotch [caused by Drechslera teres (Sacc.) 
Shoemaker] in barley are associated with climatic factors.

Another plausible strategy to facilitate the accurate 
identification of germplasm with a trait of interest is to use 
taxonomic information of the species to focus on germ-
plasm more likely to bear that trait, making the process of 
germplasm characterization more efficient by saving time 
and resources. Historically, it has been assumed that tax-
onomy has the ability to predict the presence of traits in a 
group for which the trait has been previously characterized 
in a representative subset of the group (Jansky et al., 2006; 
Spooner et al., 2009; Cai et al., 2011). The validation of this 
assumption was investigated by Jansky et al. (2008) infer-
ring predictability of early blight [caused by Alternaria solani 
(E&M) Jones & Grout] in potato from the associations of 
taxonomic information and environmental variables, show-
ing that monthly average precipitation in July was the most 
discriminating factor to predict resistance to early blight. 
In addition, Cai et al. (2011) conducted a test of taxonomic 
and biogeographic predictivity to resistance of Potato virus Y 
(PVY) in wild potato germplasm, finding that wild potato 
species with an endosperm balance number (EBN) of one 
shared stronger resistances to PVY than species with differ-
ent EBN values. In addition, they showed that populations 
of wild potatoes from low elevations were more resistant 
than populations from high elevations, even though the 
mean of the predictors had a widespread and a low pre-
dictive value. Similarly, Spooner et al. (2009) studied the 
resistance to disease and insect pests in wild relatives of cul-
tivated potato and concluded that a more effective approach 

than taxonomic and biogeographic prediction is required 
for screening of germplasm collections.

Cultivated carrot (Daucus carota L. subsp. sativus 
Hoffm.) is one of the most popular and commonly con-
sumed vegetables worldwide (Rubatsky et al., 1999). 
Modern carrot production uses mechanical harvesters, 
and strong healthy foliage is an important feature for an 
effective mechanical harvest. However, carrots are fre-
quently affected by foliar diseases, including leaf blights 
caused by fungi Alternaria dauci (Kühn) Groves & Skolko 
and Cercospora carotae (Pass.) Solheim, and bacterial blight 
caused by Xathomonas hortorum (Pammel 1895) Dowson 
1939 pv. carotae (Kendrick) Dye (Gugino et al., 2004; du 
Toit et al., 2005). Alternaria leaf blight (ALB), caused by 
A. dauci, has spread to all carrot production areas in the 
world and is considered the most destructive disease of 
carrots (Rubatsky et al., 1999; Vintal et al., 1999; Farrar 
et al., 2004), reducing yields by 40 to 60% (Ben-Noon et 
al., 2001). The most common methods of control include 
use of clean seed, crop rotation, cultivar selection, and 
fungicide applications. Partial resistance in some carrot 
cultivars offers limited protection but still requires fre-
quent fungicide applications (Boedo et al., 2010). There 
has long been interest in genetic resistance and other non-
fungicidal approaches to control of ALB (Farrar et al., 
2004). Therefore, breeding for cultivars with higher levels 
of resistance to ALB, and durable resistance to A. dauci, is 
of major interest for carrot breeders (Boiteux et al., 1993; 
Boedo et al., 2008; Simon et al., 2008).

The latest comprehensive taxonomic monograph of 
Daucus by Sáenz Laín (1981) recognized 21 species divided 
into five sections: Anisactis DC., Chrysodaucus Thell., Daucus 
L., Meoides Lange, and Platyspermum DC. Daucus species 
maintained in germplasm banks could provide additional 
sources of genetic resistance for ALB that would benefit 
cultivated carrot. With this in mind, it will be useful for 
carrot breeders to identify resistant carrot genotypes by 
using predictivity approaches. The purpose of the present 
study is (i) to evaluate resistance to ALB among Daucus 
species, and (ii) to investigate the association between the 
Daucus clades and ALB scores. To this end, we employed 
the phylogenetic tree generated by Arbizu et al. (2014b), 
using 94 nuclear orthologs, and screened 106 accessions of 
wild and cultivated carrots. We conducted an evaluation 
of carrot vigor and ALB disease resistance in the field, 
then developed a trait evolution model using the Daucus 
maximum likelihood (ML) tree (Arbizu et al., 2014b) and 
a phylogenetic linear regression model. The most signifi-
cant explanatory variable was predicted by using the ALB 
scores. Finally, to determine the strength of association 
between ALB resistance and the classification of carrots, 
a permutation tail probability (PTP) test was conducted, 
employing the phylogenetic signal as the criterion.
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values to evaluate differences between species. The AUDPC 
mean comparisons were conducted by using Tukey’s honestly 
significant difference (HSD) test with the function HSD.test in 
the Agricolae package.

A phylogenetic linear regression was employed to predict 
ALB scores in wild and cultivated species of carrots considering 
a ML tree obtained by Arbizu et al. (2014b), plant height, and 
plant width. First, we fitted six phylogenetic linear regression 
models (lambda, Brownian Motion, Kappa, Ornstein-Uhlen-
beck model with the ancestral state at the root having the 
stationary distribution, Ornstein-Uhlenbeck model with an 
ancestral state to be estimated at the root, and Early Burst) 
using the phylolm function in the phylolm package (Ho and Ané, 
2014) in R, with only ALB scores recorded 93 d after sowing 
(harvest time) as the dependent variable, and plant height and 
plant width as predictors (i.e., explanatory variables). We then 
performed model selection based on the Akaike information 
criterion (AIC). That is, the model with the lowest AIC value 
was chosen. A backward stepwise model selection for phyloge-
netic linear model was conducted using the function phylostep in 
the phylolm package. Finally, since we were interested in deter-
mining whether certain clades of our ML tree contain entries 
that possess higher levels of ALB resistance, a comparison 
among Daucus clades (Fig. 1) was performed as follows: (i) clade 
A vs. clade B + outgroup, (ii) clade B vs. clade A + outgroup, 
(iii) clade A vs. clade B, and (iv) subclade A¢ vs. the remaining 
species in clade A + clade B + outgroup. Comparisons were 
performed using a PTP test to determine whether our data con-
tain phylogenetic structure (Baum and Smith, 2013). The ALB 
scores were permuted 1000 times using R, randomly assigning 
states to taxa. Permuted datasets were subjected to phyloge-
netic signal estimation using the phylolm function. Phylogenetic 
signal was then visualized using the function hist in R. If phy-
logenetic signal for the original dataset (not permuted), which 
is Pagel’s Ʌ = 0.98, is higher than all of the permuted datasets, 
the original dataset can be said to have significant phylogenetic 
signal, determining differences among the clades that were 
compared. Then, for those comparisons that were significant, 
an ANOVA of the ALB scores recorded 93 d after sowing (har-
vest time) was performed, grouping the accessions according 
to the clade to which they belonged (Fig. 1). Briefly, Daucus is 
contained within two main clades, A and B, and within clade 
A, there is a subclade named A¢ comprising the subspecies of 
D. carota, D. syrticus Murb., and D. sahariensis Murb., all with 
2n = 18 chromosomes (Fig. 1). Finally, ALB mean comparisons 
among clades were conducted by using Tukey’s HSD test with 
the function HSD.test in the Agricolae package.

RESULTS
Alternaria Leaf Blight Screening
Severity of ALB damage was visually confirmed, as well 
as the presence of A. dauci fungi in the research plot by 
microscopic evaluation by Tas (2016). Supplemental Table 
S1 lists the disease scores recorded for each accession. At 
harvest time, complete resistance (disease score = 0) was 
observed in all four accessions of species D. crinitus. In 
addition, 11 accessions of Daucus, and two related species 
[Ammi visnaga (L.) Lam. and Torilis arvensis (Huds.) Link] 

MATERIALS AND METHODS
Plant Material
We evaluated 91 accessions of Daucus and 15 accessions of the 
related genera Ammi, Astrodaucus, Caucalis, Oenanthe, Orlaya, 
Pseudorlaya, Rouya, Torilis, and Turgenia for a total of 106 acces-
sions collected from 21 countries (Supplemental Table S1). All 
accessions were obtained from the United States National Plant 
Germplasm System, maintained at the North Central Regional 
Plant Introduction Station in Ames, IA. Further details of the 
accessions examined in this study are available at the Germplasm 
Resources Information Network (GRIN, https://npgsweb.ars-
grin.gov/gringlobal/search.aspx).

Field Experimental Design  
and Disease Phenotyping
All 106 accessions were direct seeded by hand in 1-m ´ 3-m 
observation plots at the University of Wisconsin Hancock 
Agricultural Research Station in Hancock, WI, with two repli-
cations per accession. Natural ALB infestation occurs on carrots 
in this research station; therefore, plots were not artificially 
inoculated. Nitrogen fertilizer was applied at the beginning 
and middle of the growing season. Plots were weeded by hand 
and hoe, and plants were hand thinned to 5 to 6 cm in the row, 
leaving approximately 50 to 60 carrots in each plot. An ALB 
susceptible cultivar, ‘Heritage’, was used as infection plots that 
are reliably attacked by naturally occurring populations of A. 
dauci. In addition, ‘Bolero’, a less susceptible cultivar, was also 
included as a control. Presence of A. dauci conidia was confirmed 
by Tas (2016) following the protocol described by Strandberg 
(1983). Subjective ALB ratings were scored for each accession 
plot by examining leaves in 10 random sites within each plot six 
times over the entire growing season using the following scale: 
0 = no visible disease damage, 1 = up to 25% disease damage, 2 
= 26 to 50%, 3 = 51 to 75%, 4 = >75%. Plant height and plant 
width characters were scored in the field 50 d after sowing by 
measuring 10 plants per plot, capturing the normal range of 
variation. Briefly, plant height was scored using a ruler from 
the base of the plant to the highest point. Leaves that snapped 
at their base or were near the ground were not considered to 
measure plant width; measurements were scored at the widest 
part. All evaluations were recorded by the same individual.

Statistical Analysis
We analyzed our disease scores with R version 3.3.1 (R Core 
Team, 2016). Means were calculated using the ddply function 
in the plyr package (Wickman, 2011). A descriptive statistical 
analysis was conducted to verify the mean, median, standard 
deviation, and range of values. Box plots were used to visu-
alize comparisons across accessions and to check for outliers 
that may represent erroneous entries. Accessions were classi-
fied into their corresponding species names according to the 
most recent molecular and morphological studies (Arbizu et al., 
2014a, 2014b, 2016a, 2016b; Spooner et al., 2014). A quantita-
tive summary of ALB intensity over the growing season was 
determined with the area under the disease progress curve 
(AUDPC). Values of AUDPC were calculated using the audpc 
function in the Agricolae package version 1.2-4 (de Mendiburu, 
2016) in R. We also conducted an ANOVA of the AUDPC 
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showed partial resistance (disease score = 2). Thirty-four 
accessions had ALB symptoms on >75% of the foliar area 
(disease score = 4), demonstrating very low levels of resis-
tance against A. dauci. Further, 77 d after sowing (i.e., 

~10 wk), 75 accessions had ALB symptoms on <50% of 
the foliar area, indicating partial resistance. However, at 
harvest time (93 d after sowing), they were predominantly 
scored with a value of 3 or 4, showing a progress on the 

Fig. 1. Phylogeny of Daucus obtained from Arbizu et al. (2014b) using a maximum likelihood analysis based on 94 nuclear orthologs and 
107 accessions. Species identities have been corrected in the Daucus carota complex and D. syrticus in subclade A¢, Rouya polygama 
in clade A, and members of the D. guttatus complex in clade B, according to Arbizu et al. (2014a, 2016a, 2016b).
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be included in the model. Supplemental Table S2 lists the 
predicted ALB scores, using plant height as the predictor 
(i.e., explanatory variable). Predicted ALB scores ranged 
from 3.1 to 4.0, indicating that no partial resistance was 
observed or >50% of disease damage was present in acces-
sions of Daucus and related genera.

Comparison among Daucus clades (Materials and 
Methods) to determine the presence of ALB resistance 
revealed that only two comparisons were significantly 
different, with the phylogenetic signal of the permuted 
dataset consistently lower than the phylogenetic signal 
with the original dataset: (i) clade A vs. clade B + out-
group, and (ii) clade A vs. clade B. Similarly, a multiple 
comparison procedure (Tukey’s HSD, significance level 
= 0.1) showed that entities of clade A are slightly more 
resistant to ALB when it is compared with members that 
belong to (i) clade B + outgroup (p = 0.08), and (ii) clade 
B (p = 0.03). As mentioned above, D. crinitus, which 
belongs to clade A, has the highest resistance to ALB. To 
determine if the significant difference found within clade 
A vs. clade B + outgroup and vs. clade B is not influenced 
only by the very high resistance of D. crinitus, we excluded 

spread of ALB. Variation among accessions for ALB score 
for two subspecies of D. carota was visualized using box 
plots (Fig. 2). Two members of the D. carota complex, 
subsp. capillifolius and subsp. sativus, illustrate the interac-
cession variation (Fig. 2) that exists in our dataset. Species 
were ranked according to AUDPC value (Table 1) to 
determine the resistance to ALB. Two species, Amni vis-
naga and D. crinitus, showed very high levels of resistance; 
on the other hand, D. littoralis Sibthorp & Smith and Pseu-
dorlaya pumila (L.) Grande possess the lowest significant 
levels of resistance to ALB. Among the D. carota complex 
(Fig. 3), subsp. capillifolius and subsp. maximus exhibited the 
highest and subsp. sativus the lowest significant levels of 
susceptibility (Fig. 3). Daucus syrticus, which is the closest 
species to the subspecies of the D. carota complex (Arbizu 
et al., 2016a), had a higher AUDPC value compared with 
those subspecies (Fig. 3).

Phylogenetic Linear Regression Analyses
The six models of trait evolution tested in the present 
study had AIC values ranging from 221.5 to 227.5. The 
Ornstein-Uhlenbeck model with an ancestral state to be 
estimated at the root (OUfixed) had the lowest AIC value. 
Therefore, we continued our stepwise model selection for 
phylogenetic linear model with OUfixed, obtaining plant 
height as the only significant explanatory variable (AIC 
= 220.4); plant width was not considered as significant to 

Fig. 2. Box plots showing interaccession variation for Alternaria 
leaf blight scores for Daucus carota subsp. capillifolius and 
subsp. carota.

Table 1. Area under the disease progress curve (AUDPC) in 
ascending order for 25 species and five subspecies.

Species AUDPC of Alternaria leaf blight†
Ammi visnaga 4f

Daucus crinitus 6.69f

Astrodaucus littoralis 37.75ef

Daucus glochidiatus 49ef

Daucus carota subsp. capillifolius 55.75ef

Orlaya daucorlaya 57ef

Daucus carota subsp. maximus 58.25ef

Torilis arvensis 59ef

Oenanthe virgata 60.5ef

Daucus carota subsp. carota 62.88ef

Caucalis platycarpos 67def

Daucus guttatus 70.46de

Daucus carota subsp. gummifer 70.66de

Torilis nodosa 72.42cde

Daucus carota hybrid 72.5cde

Daucus carota subsp. sativus 78.97cde

Daucus pusillus 82.42bcde

Rouya polygama 88.25bcde

Torilis leptophylla 88.75bcde

Daucus syrticus 88.79bcde

Daucus involucratus 92.83bcde

Daucus aureus 94.25bcde

Daucus setulosus 97.33abcde

Daucus tenuisectus 101.88abcde

Daucus conchitae 108abcd

Daucus muricatus 120.33abcd

Orlaya daucoides 121abcd

Turgenia latifolia 129.5abc

Daucus littoralis 129.88ab

Pseudorlaya pumila 157.75a

† Values followed by the same letter were not significantly different at p = 0.05.
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it from a new round of analyses using the PTP test. When 
D. crinitus is taken out of the analysis, the phylogenetic 
signal of the permuted dataset is still lower than the phy-
logenetic signal with the original dataset. However, this 
value without D. crinitus tends to be closer to the phy-
logenetic signal of the original dataset when comparing 
clade A vs. clade B + outgroup. In addition, the ANOVA 
test indicated that resistance to ALB of clade A is not sig-
nificantly different from other clades (p = 0.27). On the 
contrary, the ANOVA test showed differences for ALB 

resistance among members of clade A vs. clade B consid-
ering a significance level of 0.1 (p = 0.06).

DISCUSSION
A phylogenetic tree is a hypothesis of evolutionary histo-
ries based on one or more criteria (here, nuclear orthologs). 
Hypotheses of evolutionary histories have been used by 
the scientific community for various purposes (Rønsted et 
al., 2012; Baum and Smith, 2013) and have been assumed 
to be useful to predict the presence of traits of interest 

Fig. 3. Measurement of Alternaria leaf blight throughout a growing period (i.e., area under the disease progress curve [AUDPC]) of 93 d 
for subspecies of D. carota and D. syrticus.
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in a group for which the trait has been characterized in 
only a subset of the group ( Jansky et al., 2006; Spooner 
et al., 2009; Cai et al., 2011), such as disease resistance 
(Khiutti et al., 2015). To date, predictivity studies have 
been conducted in potato ( Jansky et al., 2006, 2008, 
2009; Spooner et al., 2009; Cai et al., 2011; Chung et al., 
2011; Limantseva et al., 2014; Khiutti et al., 2015), the 
family Amaryllidaceae (Rønsted et al., 2012), the genus 
Euphorbia (Ernst et al., 2016), and barley (Endresen, 2010; 
Endresen et al., 2011). However, this is the first phylo-
genetic predictivity investigation on Daucus or any other 
member of the Apiaceae.

Calculation of the AUDPC has been widely used by 
epidemiologists to assess quantitative resistance in many 
crop cultivars (Jeger and Viljanen-Rollinson, 2001). Since 
ALB is a polycyclic disease (many infection cycles in a 
season), it is recommended to calculate the AUDPC to sum-
marize the disease scores (Fry, 1978). We here identified A. 
visnaga (2n = 20, 22) and D. crinitus (2n = 22) as the most 
resistant species to ALB. These two species do not belong 
to the primary genepool for carrot breeding, which possess 
2n = 18. However, it is worth exploring the high antimi-
crobial capacity of D. crinitus against Candida albicans (C.P. 
Robin) Berkhout and Staphylococcus aureus Rosenbach (Ben-
diabdellah et al., 2013), supporting the traditional medicinal 
application of this plant. As a result, we consider that, similar 
to the study of Camadro et al. (2008), D. crinitus should be 
tested to establish the feasibility of hybridization with the 
cultivated carrot. On the other hand, we report that D. litto-
ralis and Pseudorlaya pumila are the two least resistant species. 
Interestingly, we found that, despite the higher resistance 
of Ammi visnaga, the ALB resistance level as a whole in the 
outgroup clade of Daucus (Fig. 1) was not high. This may be 
explained by the virulence of the pathogen A. dauci, which 
was reported to be capable of infecting not only wild car-
rots, but also other wild Apiaceae (Neergaard, 1977; Soteros, 
1979; Boedo et al., 2012). Among the subspecies of D. carota 
in clade A¢ (Fig. 1), subsp. capillifolius and subsp. maximus pres-
ent significantly higher levels of resistance to ALB than the 
other subspecies, demonstrating new sources of resistance to 
ALB for carrot breeding programs. Previous studies showed 
that interspecific crosses between subsp. capillifolius and other 
subspecies have been successful (McCollum, 1975, 1977). A 
recent study (Arbizu et al., 2016a) also proposed the use of 
subsp. maximus as a new source of genes for the development 
of new carrot cultivars. Further, subsp. carota possess the 
second highest level of resistance. This result is congruent 
with the study conducted by Tas (2016), where 812 acces-
sions of carrots (mainly subsp. carota) were evaluated for ALB 
disease resistance, concluding that complete resistance was 
not found, with <40 accessions exhibiting partial resistance 
to ALB (disease scores £2).

The ability to predict disease resistance to ALB in 
carrots would benefit farmers through reduced use of 

agrochemicals. In addition, plant scientists may find useful 
our results showing the predictor of carrot height, as stim-
ulated here by the studies of Turner et al. (2016, 2017). 
Additionally, our analysis predicted that no strong resistance 
(disease score = 0 or 1, Supplemental Table S2) to ALB 
existed on carrot germplasm examined here. A plausible 
explanation is the presence of a high disease pressure in the 
research field where this study was conducted. Plant height 
has been commonly used on several statistical models as a 
key variable to evaluate yield in corn (Zea mays L.; Mourtz-
inis et al., 2013). Other studies indicate that the severity 
of a foliar disease caused by Septoria tritici Desm. shows a 
relationship with date of heading and plant height in winter 
wheat (Tavella, 1978; Lovell et al., 1997). Relative to this 
study, further research is needed to determine if other top 
size traits in carrots can help to predict resistance to ALB.

A detailed screening of traits from germplasm, like 
the data generated in the present study, is frequently used 
in association mapping studies (Clotault et al., 2010; Jour-
dan et al., 2015). We here employed phylogenetic signal 
as a criterion to test the strength of association because it 
is a statistical dependence among the traits of species due 
to their phylogenetic relationships (Revell et al., 2008). 
We only found significant association between clade A 
vs. clade B + outgroup and clade A vs. clade B regarding 
resistance to ALB. Similarly, Tas (2016) studied possible 
associations between ALB severity and domestication 
status, flowering habit, leaf glossiness, storage root color, 
and geographic origin and found only a slight correla-
tion between increased ALB severity in purple-, red-, or 
white-colored root relative to orange and yellow roots. 
Studies in potato showed weak or inconsistent association 
of disease scores and taxonomy or geography ( Jansky et 
al., 2006, 2008, 2009; Spooner et al., 2009; Cai et al., 
2011; Chung et al., 2011; Limantseva et al., 2014; Khiutti 
et al., 2015). Perhaps resistance to ALB evolved rapidly so 
that no phylogenetic signal could be detected. Tas (2016) 
reported little correlation between ALB disease pheno-
types of carrots and their geographic origins. However, 
using the phylogenetic signal proposed here would be 
useful, and stronger levels of association may be obtained.

Carrot is the second most popular vegetable in the world 
after potato (Heywood, 2014), and it is the economically 
most valuable member of the Apiaceae. Extensive research 
is being conducted to understand the genetic control of 
ALB resistance in carrots (Boiteux et al., 1993; Simon and 
Strandberg, 1998; Le Clerc and Pawelec, 2009; Le Clerc et 
al., 2015). Here we provide evidence that taxa belonging to 
clade A (Fig. 2, D. carota subsp. capillifolius and subsp. maxi-
mus) may provide new sources of resistance to ALB.
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