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Abstract: Early assessment of crop development is a key aspect of precision agriculture. Shortening 

the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the 

usual concerns in agriculture. Early prediction of crop yields can increase profitability in the 

farmer's economy. In this study we aimed to predict the yield of four maize commercial hybrids 

(Dekalb7508, Advanta9313, MH_INIA619 and Exp_05PMLM) using remotely sensed spectral 

vegetation indices (VI). A total of 10 VI (NDVI, GNDVI, GCI, RVI, NDRE, CIRE, CVI, MCARI, SAVI, 

and CCCI) were considered for evaluating crop yield and plant cover at 31, 39, 42, 46 and 51 days 

after sowing (DAS). A multivariate analysis was applied using principal component analysis (PCA), 

linear regression, and r-Pearson correlation. In the present study, highly significant correlations 

were found between plant cover with VIs at 46 (GNDVI, GCI, RVI, NDRE, CIRE and CCCI) and 51 

DAS (GNDVI, GCI, NDRE, CIRE, CVI, MCARI and CCCI). The PCA indicated a clear discrimina-

tion of the dates evaluated with VIs at 31, 39 and 51 DAS. The inclusion of the CIRE and NDRE in 

the prediction model contributed to estimate the performance, showing greater precision at 51 DAS. 

The use of RPAS to monitor crops allows optimizing resources and helps in making timely decisions 

in agriculture in Peru. 
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1. Introduction 

World population growth is constant over time, with estimates of 9.7 billion people 

by 2050 and 11 billion by 2100 [1]. Therefore, it is essential to strengthen food security, 

increasing crop production through the efficient use of resources for its sustainability. In 

this sense, corn is one of the most important cereals in the world and a staple food in many 

households. It is also a source in animal feed and a fundamental product in the food in-

dustry [2,3]. World production is estimated at 1,192 Mt, with the largest producers being 

the United States, China, Brazil and Mexico [4]. 

In the last decade, the use of technologies in agriculture has also increased signifi-

cantly through the usage of geographic information systems (GIS), and global navigation 

satellite systems (GNSS), remote sensing, RPAS, machinery and other technologies that 

have supported precision agriculture [5–7]. The incorporation of these disciplines allows 

the collection, processing and analysis of temporal, spatial and individual data and com-

bines them with other data for the implementation of adequate solutions in the use of 
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resources, productivity, quality, profitability and sustainability of agricultural production 

[8–11]. 

A wide range of RPAS and satellite-mounted sensors have been used in phenotyping 

studies to obtain aerial images and monitor crop development [12,13]. Landsat and Senti-

nel-2 satellites collect images in the red wavelength and near infrared (NIR) to assess the 

health of crop development on a regional and global scale [14–17]. However, the spatial 

resolution has not been fine enough to meet the phenotypic measurement needs of various 

research projects in crops and in small areas at the level of small agricultural producers 

[12,18]. For this reason, the use of RPAS is currently gaining prestige as an integral part of 

precision agriculture, guaranteeing successful harvests [19]. 

On the other hand, RPAS with remote sensors can collect detailed information on the 

phenological development of crops through high spatial and temporal resolution images, 

which greatly reduces labor and time costs [20–22]. These sensors can acquire bands such 

as thermal infrared, RGB band, NIR band and red edge (RE) band [19]. These bands allow 

studying biomass growth, nitrogen content, yield, water stress and chlorophyll measure-

ment in citrus, corn, wheat, soybean and grapevine crops [11,22–27], through the applica-

tion of vegetation indices (VI) such as the normalized difference vegetation index (NDVI) 

and others based on reflectance [12]. 

Precise estimation of maize yield at a local or regional scale helps improve food se-

curity and develop more supportive models [28]. In Peru, the cultivated area of corn dur-

ing the 2019 - 2020 season was 237,000 hectares with a production of 1.1 Mt per hectare 

(SIEA, 2021). Recently, maize cultivation has become highly susceptible to climate change 

conditions with strong variations in yield over the years [29]. It is also subject to the lim-

ited availability of technologies that help in the detection, monitoring and analysis of the 

crop. In this context, the use of RPAS and multispectral sensors are an excellent option to 

evaluate and estimate the production of this crop [30]. Consequently, in this study we 

evaluate the performance of four maize hybrids in the Peruvian coast, by applying VI 

calculated from multispectral images obtained from RPAS. 

2. Materials and Methods 

2.1. Study area 

The data collection was carried out at the Centro Experimental La Molina (CELM) of 

the Instituto Nacional de Innovación Agraria (INIA) (-12° 4' W, -76° 56' S) (Figure 1), which 

is located in the district of La Molina, province and department of Lima (Peru). 

This area is characterized by a semi-arid climate, presenting an annual rainfall of 5.7 

mm and an average temperature of 17.3 °C in 2021 (CELM Automatic Weather Station). 

The type of soil is sandy loam with physical characteristics of electrical conductivity (EC) 

of 1.59 dS/m, pH 7.32, field capacity 14.8%, wilting point 7.7% and apparent density of 

1.54 g/cm3 (INIA Water, Soil and Foliar Research Laboratory).  
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Figure 1. Location of the study area the La Molina Experimental Center in Lima (Peru). 

The experimental field consisted of 48 research units installed with four maize com-

mercial hybrids (Dekalb7508, Advanta9313, MH_INIA619 and Exp_05PMLM). They have 

a vegetative period of approximately 120 days and adapt very well to different regions of 

the Peruvian coast. Each unit represented an area of 32.8 m2 (8 m long and 4.1 m wide) 

with five furrows spaced 0.9 m apart and between plant bumps at 0.25 m. The season of 

greater planting of the crop is carried out in spring-summer. The evaluation and monitor-

ing of the field experiment began with sowing on January 18, 2021, to end with its harvest 

on May 31 of the same year. During the vegetative period, the maximum temperature 

recorded was 30.4 °C in January, while the minimum was 15 °C in June. 

A drip irrigation system was used, with a drip flow rate of 3.7 l/h and a distance 

between drippers of 0.2 m. Management practices such as weed and pest control were 

carried out manually and the use of herbicides as part of the agronomic management of 

the field. 

2.2. Data collection 

Yield data was obtained from a representative area of 32.8 m2 in each experimental 

unit, which was then expressed as t/ha. The process consisted of weighting the total corn 

grains of each plot, and then extracting a 200 g sample to be dried in an oven at 60°C for 

an interval of 72 hours, reaching a grain moisture of approximately 10% to estimate yield 

per hectare. 

Images obtained from the RPAS covered the different stages of maize development, 

which were taken at a height of 30 meters. They were collected between 11:00 a.m. and 

2:00 p.m. to minimize changes in the solar zenith angle in cloudless weather conditions 

[31]. Five dates were selected for the acquisition of the images at 31, 39, 42, 46 and 51 DAS 

between the months of January to March 2021. The RPAS Phanthon 4 Pro 

(https://www.dji.com/phantom-4-pro?site=brandsite&from=nav, Shenzhen, China, ac-

cessed on 22 March 2022) coupled with Parrot Sequoia multispectral camera (Parrot SA, 

París, France) was used to acquire the images of the 48 study units. 
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Four bands were acquired in the wave ranges from 530 to 570 nm (Green); 640 to 680 

nm (Red); 730 to 740 nm (Red edge); 770 to 810 nm (Near-Infrared), all at a multispectral 

image´ spatial resolution of 1 megapixels [32].  

For the acquisition of precise images, a luminosity sensor located in the upper part 

of the RPAS was used. The flight plan was designed with a 75% overlap between images. 

On the other hand, for the georeferencing of the images, seven ground control points 

(GCPs) were used, which were measured using a high-precision GNSS, which were 

marked with topographic targets [33]. 

 

Figure 2. Equipment used in data collection. RPAS and radio control, and Parrot Sequoia camera. 

2.3. Canopy cover estimation 

To calculate the canopy cover, the Image Classification, Editor, and spatial analysis 

tools (Spatial Analyst Tools) of the ArcMap software (ArcGiS 10.4.1) were used. Manual 

classification of the images (Achicanoy et al., 2018) was carried out in three classes (vege-

tation cover, soil and shade). From these, an output surface map with the vegetation cover 

was generated, which allowed calculating the corn cover percentages from the mosaic of 

photos obtained with the Phantom 4 drone for each date of images generated in the field. 

2.4. Vegetation indices estimation 

The multispectral images of the RPAS missions were made with the software Pix4D 

Capture (flight plan management) and processed in the Pix4Dmapper (V4.5.6, Pix4D S.A., 

Prilly, Switzerland) that allowed to generate the orthomosaic. We also performed the ge-

ometric correction and obtained the reflectance values [25]. Before calculating the VI, the 

supervised classification was applied identifying i) maize, ii) weeds, iii) shade, and iv) 

soil, which allowed determining the maize cover [34]. The VI were estimated within the 

area of the corn cover that was previously extracted through spatial mask extraction pro-

cessing in the software ArcGIS 10.5. In the Table 1 shows the indices evaluated on the five 

study dates. 

Table 1. Vegetación indices applied for corn yield evaluation. 

Índices Ecuación Fuente 

Normalized Difference Vegeta-

tion Index (NDVI) 
𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 [35] 

Green Normalized Difference 

Vegetation Index (GNDVI) 
𝐺𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 [36] 

Green Chlorophyll Index (GCI) 𝐺𝐶𝐼 =  
𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛
− 1 [37] 

b) 
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Ratio Vegetation Index (RVI) 𝑅𝑉𝐼 =  
𝑁𝐼𝑅

𝑅𝑒𝑑
 [38] 

Normalized Difference RedEdge 

Index (NDRE) 
𝑁𝐷𝑅𝐸 =  

𝑁𝐼𝑅 − 𝑅𝑒𝑑𝑒𝑑𝑔𝑒

𝑁𝐼𝑅 + 𝑅𝑒𝑑𝑒𝑑𝑔𝑒
 [39] 

ChlorophyII Index-RedEdge 

(CIRE) 
𝐶𝐼𝑅𝐸 =  

𝑁𝐼𝑅

𝑅𝑒𝑑𝑒𝑑𝑔𝑒
− 1 [37] 

ChlorophyII Vegetation Index 

(CVI) 
𝐶𝑉𝐼 =  

𝑁𝐼𝑅 ∗ 𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛2  [40] 

Modified Chlorophyll Absorp-

tion Reflectance Index (MCARI) 

𝑀𝐶𝐴𝑅𝐼 = [(𝑅𝑒𝑑𝑒𝑑𝑔𝑒 − 𝑟𝑒𝑑) − 0.2
∗ (𝑅𝑒𝑑𝑒𝑑𝑔𝑒 − 𝑔𝑟𝑒𝑒𝑛)

∗  
𝑅𝑒𝑑𝑒𝑑𝑔𝑒

𝑅𝑒𝑑
 

[41] 

Soil Adjusted Vegetation Index 

(SAVI) 
𝑆𝐴𝑉𝐼 =  

(𝑁𝐼𝑅 − 𝑅𝑒𝑑)(1 + 𝐿)

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 𝐿
 [42] 

Canopy Chlorophyll Content In-

dex (CCCI) 
𝐶𝐶𝐶𝐼 =  

𝑁𝐼𝑅 − 𝑅𝑒𝑑𝑒𝑑𝑔𝑒
𝑁𝐼𝑅 + 𝑅𝑒𝑑𝑒𝑑𝑔𝑒

𝑁𝐼𝑅 − 𝑅𝑒𝑑
𝑁𝐼𝑅 + 𝑅𝑒𝑑

 [43] 

2.5. Data analysis and model development  

Firstly, agronomical yield measurement for each corn hybrid were estimated based 

on the weights of dry grain of corn expressed in tons per hectare. The averages and stand-

ard error for each hybrid and the comparison of means was carried out by a Duncan.test 

with alpha=0.05. 

The canopy cover and VIs were estimated from the multispectral at 31, 39, 42, 46 and 

51 DAS. A Duncan.test means comparison was performed among corn hybrids on each 

date evaluated. With the data over time, box plot graphs were constructed over the five 

dates for each variable evaluated in the experiment. 

A principal component analysis (PCA) was performed to determine the variations 

between each VI over time and determine the most relevant index in predicting yield. 

Subsequently, the r-Pearson correlation was applied to the indices with greater perfor-

mance accuracy. Finally, the yield means between the four maize varieties were compared 

using Duncan's test with con α=0.05. We used the following libraries within R, [44] fac-

toMineR [45], ggplot2 [46], factoextra [47], GGally [48], Hmisc [49] and agricolae [50]. 

3. Results 

3.1. Yield for each corn hybrid and canopy cover estimation 

Figure 3 shows the results of applying the Duncan test to compare the means of yield 

per hybrid at 51 DAS and the percentage of canopy cover, according to DAS and VI. Two 

groups without significant differences were identified, the first consisting of Advanta9313 

(9.91 ± 2.15 t/ha) and Dekalb7508 (8.85 ± 1.38 t/ha), and the second MH_INIA619 (6.23 ± 

1.51 t/ha) and Exp_05MLM (5.81 ± 1.21 t/ha) (Figure 3a). The yield varies from 5.81 to 9.91 

t/ha. The hybrids Advanta9313 and Decalb7508 presented the highest performance and 

hybrid Exp_05MLM reported the lowest (Figure 3b). At the level of canopy coverage at 31 

DAS, the hybrid Exp_05MLM presented greater coverage, followed by Dekalb7508 and 

MH_INIA619. Dekalb7508 presented greater canopy coverage at 39 and 46 DAS. How-

ever, at 51 DAS the canopy cover for the four hybrids were similar. 
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Figure 3. Comparison of crop yield and canopy cover according to maize hybrid. a) Crop yield of 

the four corn hybrids with Duncan.test α = 0.05; b) plot of Canopy cover according to hybrid, at 31, 

39, 42, 46 and 51 DAS. 

3.2. Vegetation indices estimations and canopy cover relationships  

The canopy cover according to the DAS is shown in Figure 4a. Greater variability of 

canopy cover at 31 DAS is presented, which improved at 51 DAS. The correlation between 

the VI with the DAS (Figures 4b-k) indicated that the reflectance values for nine indices 

increased cumulatively with the advance of the vegetative period. Only the MCARI re-

ported a decrease at 42 DAS. The GNDVI, GCI, RVI, NDRE, CIRE and CCCI indices) 

showed high significance of plant cover at 46 DAS and the GNDVI, GCI, NDRE, CIRE, 

CVI, MCARI and CCCI indices at 51 DAS. 
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Figure 4. Comparison of canopy cover according to DAS and vegetation indices; a) Canopy cover; 

b) NDVI; c) GNDVI, d) GCI; e) RVI, f) NDRE; g) CIRE, h) CVI; i) MCARI; j) SAVI; k) CCCI. 

3.3. Development of prediction models to calculate crop yields 

Table 2 shows the r-Pearson correlation between DAS, canopy cover and VI. The 

highest correlation between DAS and canopy cover occurs at 39 and 51 DAS with -0.41 

and -0.43, respectively. The SAVI (-0.32) and MACARI (-0.36) indices presented a minor 

correlation at 31 and 51 DAS. On the other hand, the GNDVI (0.42) and GCI (0.41) indices 

presented correlations of medium importance. The NDRE (0.58), CIRE (0.57) and CCCI 

(0.54) indices reported a highly significant correlation at 46 DAS. Likewise, at 51 DAS, the 

GNDVI (0.55), GCI (0.57), NDRE (0.78), CIRE (0.78), CVI (0.52) and CCCI (0.64) indices 

showed a very significant correlation. 
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Table 2. r-Pearson correlation between corn yield with canopy cover and vegetation indices. 

DAS C_cover NDVI GNDVI GCI RVI NDRE CIRE CVI MCARI SAVI CCCI 

31 -0.28 -0.22 -0.05 -0.03 -0.18 0.26 0.24 0.11 -0.44** -0.32* 0.33 

39 -0.41** -0.10 0.03 0.07 -0.01 0.21 0.19 0.19 -0.20 -0.20 0.27 

42 -0.30* 0.11 0.14 0.16 0.16 0.23 0.24 0.04 -0.05 -0.02 0.08 

46 -0.28 0.29 0.42** 0.41** 0.31* 0.58*** 0.57*** 0.28 -0.16 0.03 0.54*** 

51 -0.43** 0.15 0.55*** 0.57*** 0.25 0.78*** 0.78*** 0.52*** -0.36* -0.10 0.64*** 

* P value < 0.05 ** P value < 0.01 *** P value < 0.001. 

The relationship between crop yield and VI is shown in Table 3. The NDVI, MCARI 

and SAVI indices reported highly significant correlations for all evaluation days. In turn, 

correlation for the GNDVI, GCI, RVI indices at 51 DAS varies from very significant to 

medium importance. However, for the CVI and CCCI indices, the correlation increases 

according to the DAS. 

Table 3. r-Pearson correlation between corn yield with vegetation indices. 

DAS NDVI GNDVI GCI RVI NDRE CIRE CVI MCARI SAVI CCCI 

31 0.81*** 0.51*** 0.50*** 0.78*** 0.45** 0.46*** 0.09 0.77*** 0.88*** 0.24 

39 0.84*** 0.66*** 0.61*** 0.75*** 0.15 0.19 0.19 0.84*** 0.88*** -0.53*** 

42 0.71*** 0.61*** 0.58*** 0.72*** 0.11 0.17 -0.22 0.82*** 0.86*** -0.55*** 

46 0.69*** 0.38* 0.34* 0.62*** 0.05 0.08 -0.36* 0.80*** 0.80*** -0.32* 

51 0.55*** 0.05 -0.02 0.42** -0.45** -0.42** -0.48*** 0.73*** 0.73*** -0.64*** 

* P value < 0.05 ** P value < 0.01 *** P value < 0.001. 

The results of the PCA are presented in Figure 5 for the five dates evaluated. There 

is a variability of the VI according to the temporality, the greater the distance from the 

calculation, the greater the difference between them. For comparison, on days 31, 39 and 

51 DAS, there is no group overlap (Figure 5a), indicating a clear discrimination of the 

groups in this multivariate analysis. However, the opposite occurs at 39, 42 and 46 DAS, 

where there is an overlap because they are very close dates that do not allow a clear dis-

crimination of the indices generated on the maize plant cover. 

When performing the PCA for the canopy cover and yield indices at each date of the 

generated images (Figures 5b-e), we observe that there is no clear discrimination of groups 

with respect to the maize hybrids evaluated, but at 51 DAS (Figure 5f) two groups are 

observed. The corn yield at 51 DAS goes in the same direction as most VI, which is also 

reflected in the correlations with greater significance for that date (Table 2). 
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Figure 5. PCA for VI during the evaluation days, a) PCA for the indices and DAS, b) PCA for the 

indices and group of hybrids at 31 DAS; c) PCA for the indices and group of hybrids at 39 DAS; c) 

PCA for the indices and group of hybrids at 42 DAS; d) PCA for the indices and group of hybrids 

at 46 DAS; e) PCA for the indices and group of hybrids at 51 DAS. 

Based on the indices that presented significant correlations with a P value > 0.45 (GCI, 

NDRE, CIRE and CCCI), two crop yield prediction models were built at 46 and 51 DAS. 

Model 1 was built based on the NDRE, CIRE and CCCI indices at 46 DAS, which reported 

a coefficient of determination (R2) of 0.34 (Figure 6a) and does not show a significant in-

crease per index (Figures 6b-d). In turn, model 2 was built from the GCI, NDRE and CIRE 

indices at 51 DAS with an R2 of 0.62 (Figure 6e). However, at the index level, the GCI 
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reports the lowest R2 (R2 = 0.33) (Figure 6f) with respect to the NDRE and CIRE, which 

presented R2 values of 0.61 (Figures 6g-h). 

 

Figure 6. Maize yield prediction models with multiple linear regression; a) Model 1 for performance 

prediction using the NDRE, CIRE and CCCI indices at 46 DAS; b) Model 1 for performance predic-

tion using NDRE at 46 DAS; c) Model 1 for performance prediction using CIRE at 46 DAS; d) Model 

1 for performance prediction using CCCI at 46 DAS; e) Model 2 for performance prediction using 

the GCI, NDRE and CIRE indices at 51 DAS; f) Model 2 for performance prediction using GCI at 51 

DAS; g) Model 2 for performance prediction using NDRE at 51 DAS; h) Model 2 for performance 

prediction using CIRE at 51 DAS. 
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4. Discussion 

The use of multispectral images obtained from RPAS allowed the prediction of the 

yield of the maize crop in this study. One of the advantages of using RPAS in the moni-

toring of experimental plots or crops is that it can be controlled remotely and generates 

lower maintenance costs and acquisition of high-resolution images [51]. Hybrid Ad-

vanta9313 (9.91 t/ha) presented the highest yield at 51 DAS, a value higher than the na-

tional average of 4.77 t/ha [52] and similar to those reported by Gavilánez-Luna & Gómez-

Vargas[53]. This superiority in yield performance could be due to its wide adaptability to 

the maize areas of Peru and its good production stability [54]. 

For the estimation of canopy cover in the experimental plot, a total of 10 VIs were 

selected (Table 1). VIs were calculated using multispectral reflectance measurements at 

visible and near-infrared wavelengths. This range of lengths have been used in different 

precision agriculture applications such as plant counting, growth monitoring, phenology 

and chlorophyll measurement. [24,31,51,55,56]. At the VI level, it is observed that at 46 

and 51 DAS, there are high significant correlations, since, at this stage, the chlorophyll 

content also increases significantly, as does the canopy cover. In nine indices, values in-

creased cumulatively with advancing growing season. Only the MCARI showed a de-

crease at 42 DAS. The NDVI values ranged from 0.75 to 0.83 throughout the evaluation, 

unlike the GNDVI that went from 0.65 to 0.75, the SAVI being very similar to the NDVI 

on the first date evaluated. The average values were 0.4 and for the 51 DAS they oscillated 

around 0.70.  

In regards to calculated linear regression models, better results were obtained at 51 

DAS and only when they were generated from a single vegetation index. Indices NDRE 

and CIRE presented the highest R2 (0.61) with the following models: 92.454*NDRE-26.393 

and 17.752*CIRE-13.544. On the other hand, the R2 values are lower than those obtained 

by Barzin et al. [57], who used the index OSAVI y SCCCI. At the same time Sunoj et al. 

[58] used exponential and nonlinear NDVI models for yield prediction and obtained R2 

values greater than 0.90. The lower correlations in the early stage may be due to the fact 

that the physiological characteristics of maize do not yet show significant differences. In 

other studies, they used satellite images such as MODIS and Landsat 8, where they found 

high performance predictions at 65-75 and 60-62 DAS, respectively [26,59].  

The NDVI showed a low correlation (0.15) for yield estimation. However, higher 

NDVI values (0.53) have been reported in other studies, this may be due to the location 

and range of the electromagnetic spectrum taken by the Parrot Sequoia camera [27]. These 

results are also different from those obtained in wheat crops where the NDVI values fluc-

tuated from 0.40, 0.49 and 0.45, for the early, intermediate and late grain-filling stages for 

full irrigation treatment [60]. In another study carried out with Landsat images, the indices 

that best predicted corn crop yield were Enhanced Vegetation Index (EVI), SAVI and Op-

timized Soil-Adjusted Vegetation Index (OSAVI), which were different from the NDVI 

[61]. Through the use of Landsat-7 ETM+ and Spot 5 images, they found high correlation 

values of the NDVI index in the yield of sugarcane, sugar and barley [62,63]. 

At small spatial scales, our study provided insight into the potential of using re-

motely sensed spectral VI from RPAS’ multispectral images for monitoring and estimat-

ing maize field yield. RPAS and multispectral cameras can provide substantial spatial data 

on crop yield and quality at low cost [64]. In addition, they provided an opportunity to 

monitor farmers' plots, where crop monitoring is limited. Finally, this study opens new 

doors for the development of research and practical applications of drones in agriculture 

for all the three regions of Peru: costa, sierra and selva (coast, highlands and Amazon). 
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5. Conclusions 

Results indicated a highly significant correlation between canopy cover and 10 VIs 

derived from RPAS multispectral images. Performance showed high correlations at 46 

DAS with six indices (GNDVI, GCI, RVI, NDRE, CIRE and CCCI) and at 51 DAS with 

seven indices (GNDVI, GCI, NDRE, CIRE, CVI, MCARI and CCCI). Prediction models for 

performance from multiple correlations at 46 and 51 DAS were similar when three indices 

or just one were used. The PCA indicated a clear discrimination of the dates evaluated 

with the VI at 31, 39 and 51 DAS. The corn hybrids Dekalb7508 and Advanta9313 pre-

sented better performance than MH_INIA619 and Exp_05PMLM. Corn yield showed a 

high correlation during the reproductive stage (46 and 51 DAS) with the indices (GNDVI, 

GCI, RVI, NDRE, CIRE, CVI, MCARI and CCCI). In short, when compared to manual 

evaluation, VIs will allow timely decisions to be made when monitoring corn crops. 
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