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Abstract: In Peru, grasslands monitoring is essential to support public policies related to the iden-
tification, recovery and management of livestock systems. In this study, therefore, we evaluated
the spatial dynamics of grasslands in Pomacochas and Ventilla micro-watersheds (Amazonas, NW
Peru). To do this, we used Landsat 5, 7 and 8 images and vegetation indices (normalized difference
vegetation index (NDVI), enhanced vegetation index (EVI) and soil adjusted vegetation index (SAVI).
The data were processed in Google Earth Engine (GEE) platform for 1990, 2000, 2010 and 2020
through random forest (RF) classification reaching accuracies above 85%. The application of RF in
GEE allowed surface mapping of grasslands with pressures higher than 85%. Interestingly, our results
reported the increase of grasslands in both Pomacochas (from 2457.03 ha to 3659.37 ha) and Ventilla
(from 1932.38 ha to 4056.26 ha) micro-watersheds during 1990–2020. Effectively, this study aims to
provide useful information for territorial planning with potential replicability for other cattle-raising
regions of the country. It could further be used to improve grassland management and promote
semi-extensive livestock farming.

Keywords: grassland dynamics; Google Earth Engine (GEE); sustainable livestock; remote sensing;
random forest (RF); Landsat

1. Introduction

Worldwide, there are more than 4.1 billion ha of grasslands, representing 40% of the
Earth’s surface [1]. Grasslands are among the main terrestrial ecosystems that provide
numerous ecosystem services [2,3]. Among them, these services include the capture of
carbon dioxide (7.7 t CO2/ha) [4], maintenance of nutrient levels in the soil in the long
term [5], protection against wind erosion, sand fixation and water conservation [6]. In
addition, grasslands are the source of goods and services for the population and provide
food, fodder and energy for livestock [7]. Pastures and similar plants are the dominant
vegetation in all grasslands that provide a large amount of biomass underground [3].

The degradation of grassland vegetation during the last 50 years [8] has been related to
the increase in the number of cattle that consume 3.9 billion ha of pasture [9]. It is estimated
that in the next 10 years, the carrying capacity will vary from 2 to 0.5 cows/ha [10], which
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will contribute to the development of an important conflict between the area of pasture and
the number of livestock [11]. However, the increase in livestock demands an increasing
amount of new pasture plots that contribute to the loss of vegetation cover [12] and soil
fertility [13]. Other factors, such as climate, forest fires and grazing, affect the composition,
structure and functioning of grasslands [3]. In the Americas, approximately 1.5 million ha
were lost from 2014 to 2015 [14] and 650 million ha have been degraded [10]. As less than
10% of grasslands are protected and have rarely been a target in international conservation
agendas, they have been undervalued, and little has been invested to calculate the benefits
they provide for people and nature [15].

Understanding the spatiotemporal dynamics of grasslands is important to promote
better territorial governance, optimization of goods and services of regulation, support and
provisioning [16]. The monitoring of grassland conditions through remote sensing data
requires regularity and temporal quality to generate cartographic results of the vegetative
development scenario affected by phenological dynamics and the long-term effects of global
vegetation change trends [17,18]. In this sense, the use of remote sensing technologies
is proving to be a promising tool to support the efficient management of permanent
grasslands through the provision of information about the botanical composition, structure,
phenology, quantity and quality [19–21]. In recent years, the increasing availability of
satellite data, as well as the development of the new algorithms and cloud computing
platforms used to analyze them, has allowed the generation of products that are capable of
capturing more detail on a planetary scale [22,23]. For example, the use of sensors such as
Advanced Very High Resolution Radiometer (AVHRR) and Moderate-Resolution Imaging
Spectroradiometer (MODIS) have allowed the spatiotemporal analysis of large extensions
of grasslands [24,25]. However, these products present limitations for evaluating small
areas, due to their low spatial resolution (greater than 250 m) [26]. In this context, the
processing of remote sensing data is an important requirement to generate specific spatial
information with adequate scientific quality for medium- and long-term monitoring at
different scales [27]. Additionally, the use of higher spatial resolution optical sensors such
as Sentinel (~10 m) and Landsat (~30 m) are used to assess grasslands [28–30].

In the mapping of different grassland areas in the world, images from the Landsat
sensor have been used through automated classification and in the cloud computing
platform Google Earth Engine (GEE) [31,32]. Additionally, Sentinel satellite images have
been used to evaluate the quality of pastures for management and conservation purposes
using partial least squares (PLS) regression models [33]. Other studies applied the automatic
classification method (random forest) of MODIS images for the evaluation of the spatial
dynamics and occupation of grasslands [17,25].

In recent decades, the use of remotely sensed vegetation indices has been widely used
for crop phenological assessment, vegetation classification, water resources and ecosystem
monitoring [34–37]. Vegetation indices are the arithmetic combination of two or more
bands of different reflectance of the red and near-infrared spectrum with various spectral
resolutions [38]. The normalized difference vegetation index (NDVI) [39] is one of the
most widely used indices worldwide. Among its advantages, it helps to reduce noise
caused by changes in sun angles, topography, clouds or shadows, and atmospheric condi-
tions [34,38]. However, this index is affected at higher biomass levels due to variations in
canopy cover [40]. To overcome these drawbacks, alternative indices such as the Enhanced
Vegetation Index (EVI) [41], and the Soil Adjusted Vegetation Index (SAVI) have been
used [42]. The EVI reduces these errors and improves biomass estimation by correcting
for the adverse effects of environmental factors, such as atmospheric conditions and soil
background [38,43]. In addition, SAVI is used to correct for the influence of ground gloss in
areas where vegetation cover is low, which improves the topographic effect [42].

The evaluation of the phenological response has been through the use of time series of
Landsat, Sentinel and MODIS images through the application of spectral indices such as
NDVI, EVI and SAVI. Likewise, several studies developed classification approaches to map
pastures and other land uses using multiple sensors, platforms and automatic classification
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algorithms in different regions of the world, such as in Brazil [25,31], the United States [1]
and other regions [22,44–46]. Despite some previous work in Peru [47–50] regarding
livestock micro-watersheds, the absence of pasture maps limits the spatiotemporal analysis
of pastures and their implications for territorial, economic and environmental dynamics.

Considering the dynamics of agricultural land use in Peru, grasslands are an important
asset for the country, which covers 18 million ha of natural pastures and can be used
as land reserves and as food for the 2.3 million agricultural units [51]. At the national
level, more than 60% of high Andean grasslands are in the process of degradation [52]
due to overgrazing, fires and inadequate management [53,54]. In this context, due to the
importance of grasslands for the development of anthropogenic activities (livestock, poultry
and others) and the ecosystem services they provide, grasslands represent a valuable
resource for humans. Therefore, this study aimed to evaluate the spatial dynamics of
grasslands in the livestock micro-watersheds of Pomacochas and Ventilla through the use
of Landsat images in the GEE platform. Furthermore, and based on the results, inter-annual
pasture maps are generated for two of the main micro-basins of the Amazon region with
potential replicability for other cattle-raising regions of the country.

2. Materials and Methods
2.1. Study Area

Amazonas is located in northern Peru, with an approximate area of 39.25 km2 and
an altitudinal gradient that extends from 120 to 4900 m.a.s.l. from north to south [27].
Four types of ecosystems can be identified: (i) lowland forest, (ii) tropical dry forest,
(iii) Andean forests and grasslands and (iv) high forest or yunga, and these ecosystems
are distributed from north to south with high biophysical diversity. Agriculture and
livestock are the main economic activities and occupy 20.24% and 4.66% of the surface
of the Amazon, respectively [55,56]. Four areas dedicated to livestock have been identi-
fied: (1) Pomacochas—Jumbilla (Bongará), (2) Molinopampa (Chachapoyas)—Mendoza
(Rodríguez de Mendoza), (3) Leimebamba (Chachapoyas) and (4) Chiriaco. The first three
are located in areas with a temperate climate at altitudes above 2000 m.a.s.l., where dairy
cattle and improved breeds predominate [57]. In the last zone, cattle predominate and the
climate is warm and humid [58].

The areas of Molinopampa and Pomacochas are located in the provinces of Chachapoyas
and Bongará, respectively, where we find the livestock micro-watersheds of Ventilla
(Molinopampa) and Pomacochas (Figure 1). Livestock feeding is based on managed
grasslands (combined with silvopastoral systems and forages) and natural grasslands, and
there is an open field and semi-intensive rearing system [56,59,60]. Natural grasslands
are intended for grazing and have been formed on areas of open primary forest to install
crops [47]. However, as a result of poor agricultural practices, deforestation, infrastruc-
ture construction and overgrazing, these ecosystems are being degraded [27,47,56,60]. To
date, neither the exact surface extent of the grasslands of these micro-watersheds nor their
spatiotemporal dynamics are known; therefore, the present study was developed.
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Figure 1. Location of the study area in the Amazon region: (a) the Pomacochas micro-watershed in
the province of Bongará and (b) the Ventilla micro-watershed in the province of Chachapoyas.

2.2. Methodological Design

Figure 2 shows the flow diagram used to evaluate the spatial dynamics of grasslands
using Landsat data in the livestock micro-watersheds of Amazonas (Peru). In summary,
the temporality of the satellite images was determined, and then the images were pro-
cessed using Remote Sensing (RS) and Geographic Information Systems (GIS). The thematic
accuracy and intensity of changes were evaluated in different evaluation periods. Subse-
quently, in a GIS environment, the areas of loss and increase of grasslands in the study area
were identified.

Land 2022, 11, x FOR PEER REVIEW 4 of 20 
 

 

Figure 1. Location of the study area in the Amazon region: (a) the Pomacochas micro-watershed in 

the province of Bongará and (b) the Ventilla micro-watershed in the province of Chachapoyas. 

2.2. Methodological Design 

Figure 2 shows the flow diagram used to evaluate the spatial dynamics of grasslands 

using Landsat data in the livestock micro-watersheds of Amazonas (Peru). In summary, 

the temporality of the satellite images was determined, and then the images were pro-

cessed using Remote Sensing (RS) and Geographic Information Systems (GIS). The the-

matic accuracy and intensity of changes were evaluated in different evaluation periods. 

Subsequently, in a GIS environment, the areas of loss and increase of grasslands in the 

study area were identified. 

Landsat 5, 7 and 8

Collection of images

Preparation of images in GEE

Filtered by coverage, 
area and date

Training (50%)

Selected images

Spectral Indices

NDVI, 
NDWI, 

SAVI y EVI Validation 
(50%)

Classification with Random 
Forest (RF) in GEE

Grassland No Grassland

Grassland map

1990, 2000, 2010 y 2020

Periods

Confusion matrix

Classification and Validation

-ShadowSum
-CloudThresh

% clouds        

Cloud masking

 

Figure 2. Methodological flowchart used to evaluate the spatial dynamics of grasslands using Land-

sat data in livestock micro-watersheds of Amazonas (Peru). 

2.3. Spatial Input Data 

There are several products available that enable the identification of grasslands for 

different areas of the world. In this study, we used optical data available on the GEE plat-

form. Among them, the multispectral Landsat images available from the Center for 

Figure 2. Methodological flowchart used to evaluate the spatial dynamics of grasslands using Landsat
data in livestock micro-watersheds of Amazonas (Peru).

2.3. Spatial Input Data

There are several products available that enable the identification of grasslands for
different areas of the world. In this study, we used optical data available on the GEE
platform. Among them, the multispectral Landsat images available from the Center for
Geological Studies of the USA (USGS) of Landsat 5, 7 and 8 that cover the study area from
1984 to date were compiled on the GEE platform [46]. Landsat Collection 1 Level 1 and Tier
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1 are surface reflectance (SR) products with orthorectification and 30 m spatial resolution in
spectral bands are suitable for comparison and multitemporal detection of changes [61,62].
The acquisition of the images included the mosaic of the years 1990, 2000, 2010 and 2020.
The annual collections had a spatial resolution of 30 m (Table 1), a maximum cloudiness of
50% and spectral bands [63].

Table 1. Spatial and spectral general characteristics and number of images per year for the Landsat 5,
7 and 8 collections.

Collection

No. of Images * (Cloud Cover < 50%)

Ventilla Micro-Watershed ** Pomacochas Micro-Watershed **

1900 2000 2010 2020 1900 2000 2010 2020

LANDSAT/LT05/C01/T1_SR 7 3 4 2 2 2
LANDSAT/LE07/C01/T1_SR 2 3
LANDSAT/LC08/C01/T1_SR 12 3

* Total number of mosaic images for the study area. ** Path: 9 and Row: 64.

2.4. Preprocessing

The first processing step was to build annual mosaics of cloudless Landsat images.
For this purpose, cloud mask were applied using the C Mask function (CFMASK) Algo-
rithm [64], Temporal Dark Outlier Mask (TDOM) [65], cloud masking and Band Quality
Assessment (BQA) information available in the Landsat Collection. Annual mosaics of
images were then generated by applying statistical reducers using mathematical functions
in GEE such as median, maximum and minimum [63]. Subsequently, three vegetation
indices were applied based on reflectance data of the Near-Infrared (NIR), red, blue and
green bands (Table 2). Specifically, the NDVI, SAVI and EVI are related to the greenness of
the vegetation and help identify the vegetation cover [46]. In addition, the index NDWI [66]
was used to delineate the characteristics of the water bodies present in the study area.

Table 2. Spectral indices used for estimation.

Name Abbreviation Formula Source

Normalized Difference Vegetation Index NDVI NDVI =
(

NIR−Red
NIR+Red

)
[39]

Enhanced Vegetation Index EVI EVI = 2.5 NIR−Red × 1.5
(NIR−6 × Red+7.5 × Blue)+1 [41]

Soil-Adjusted Vegetation Index SAVI SAVI = (NIR−Red) × 1.5
(NIR+Red+0.5) [42]

Normalized Difference Water Index NDWI NDWI =
(

Green−NIR
Green+NIR

)
[66]

The first processing step was to build annual mosaics of cloudless Landsat images. To
do this, cloud masks were applied using the C Function Mask (CFMASK) algorithm [48]
and applied the Temporary Dark Outlier Mask (TDOM) cloud masking and Band Quality
Assessment (BQA) information available in the Landsat Collection. Annual mosaics of
images were then generated by applying statistical reducers using mathematical functions
in GEE such as median, maximum and minimum.

The NDVI defines the vegetation cover with the difference in visible and near-infrared
reflectance and is widely used for the monitoring of vegetation dynamics at different
scales [67,68]. Again, the EVI was developed to optimize the vegetation signal with
improvements in sensitivity in regions with high biomass and vegetation, which allows the
monitoring of vegetation and reduces the atmospheric influence [69]. Additionally, SAVI is
applied in the analysis of the vegetation in stages of initial growth or dispersed vegetation
with exposure of the terrestrial surface [70,71].



Land 2022, 11, 674 6 of 18

2.5. Classification of Satellite Images

For the classification, field training data were collected from the “grassland” and
“non-grassland” classes through the use of a Global Navigation Satellite System (GNSS)
receiver and photographic records (Figure 3) [46,62]. The grassland mapping was based in
annual mosaics and the application of supervised classification. The approach used several
spectral responses during one year and the best images were considered (without clouds
and without cloud shadows) [25].
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non-grasslands, including andean grassland/scrubs, water, forest and urban areas, respectively.
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The classification approach used random forest (RF), an algorithm that considers
the combination of predictors of decision trees based on a majority vote to choose a
final class [72]. Multiband images were created that included the NDVI, SAVI and EVI
that improved the performance of the image classification algorithms by identifying the
grassland and non-grassland classes in GEE [73]. The results of the classification, with the
probability per pixel of the grassland and non-grassland classes, were exported to Google
Drive. These data were downloaded to a local workstation and combined to produce
interannual grassland maps for the two micro-watersheds. To improve the classified maps,
the images were visually compared in RGB combination with the classified map of each
year of analysis [74]. The pixels of date one were considered as a reference to correct the
pixels in date 2, in addition to identifying possible classification errors and discarding pixels
in bodies of water and other uses. Finally, for all grassland maps, a minimum mappable
area of 0.5 ha was used [75].

The final maps of pastures were evaluated using 3648 points randomly distributed
equally in the classes of pastures and non-pastures assuming a precision error of 2% within
a confidence interval of 96% [62,75]. The points were visually inspected for each year. The
use of these points allowed calculation of the User Accuracy (UA), which corresponds to
commission errors (from the user’s perspective), and the Producer’s Accuracy (PA), which
is associated with omission errors (from the producer’s perspective) (Tables S1 and S2). In
addition, the Global Accuracy (GA) and the Kappa index (k) were estimated [62,76].

2.6. Intensity of Changes and Transition Matrices

The intensity of the changes in each class was determined for each period analyzed
(1990–2000, 2000–2010 and 2010–2020) [77], and cross-tabulation matrices were constructed
to quantify the loss or gain of each class [62,78]. Finally, the annual rate of change proposed
by the FAO (2001) was calculated in Equation (1):

s =
(

S2

S1

)1/t2 − t1

− 1 (1)

3. Results
3.1. Grassland and Non-Grassland Maps

The grassland class for the last 30 years showed an increase in the Pomacochas and
Ventilla watersheds. In the Pomacochas micro-watershed, the area of grassland was 38.6%
(2457.03 ha) in 1990; however, by 2020, the area increased to 57.4% (3659.37 ha). In turn, the
Ventilla micro-basin reported a grassland area of 8.6% (1932.38 ha) in 1990, and by 2020, the
area increased to 18.1% (4056.26 ha) (Table 3).

Table 3. Area (in ha) of grassland and no-grassland in 1990, 2000, 2010 and 2020 in the micro-
watersheds of Pomacochas and Ventilla.

Class
1990 2000 2010 2020 1990–2020

ha % ha % ha % ha % ha %

Pomacochas

Grassland 2457.03 38.6 2679.29 42.1 3022.19 47.4 3659.37 57.4 1202.34 48.9
No-grassland 3913.25 61.4 3690.99 57.9 3348.09 52.6 2710.91 42.6 −1202.34 −30.7

Total 6370.28 100 6370.28 100 6370.28 100 6370.28 100

Ventilla

Grassland 1932.38 8.6 3741.63 16.7 3629.22 16.2 4056.26 18.1 2123.88 109.9
No-grassland 20,500.81 91.4 18,691.56 83.3 18,803.97 83.8 18,376.93 81.9 −2123.88 −10.4

Total 22,433.19 100 22,433.19 100 22,433.19 100 22,433.19 100
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The spatial distribution of the grasslands in the Pomacochas micro-basin increased to the
southwest and northeast of the micro-watersheds, especially in areas near Lake Pomacochas,
Florida city and along the roads and highways. Likewise, in the Ventilla micro-watershed, the
increase in grasslands was greater and was distributed to the southwest on both banks of the
lower course of the Ventilla River, near the city of Molinopampa (Figure 4).
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Statistical validation of the maps generated was achieved based on validation points
for each micro-watershed, which allowed comparison of GA and Kappa (Figure 5). The GA
obtained for the Pomacochas micro-watershed in 1990, 2000, 2010 and 2020 was between
0.94 and 0.96 and Kappa varied between 0.87 and 0.92; while the Ventilla micro-watershed
presented GA between 0.94 and 0.97 for 1990, 2000, 2010 and 2020, with kappa values
ranging between 0.88 and 0.93.
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3.2. Exchange Rates (s)

The spatiotemporal dynamics of grassland and non-grassland for the Pomacochas
micro-basin showed an increase of 18.8% (1202.34 ha) (Figure 6). However, for the last two
years (2010 and 2020), the largest increase in grassland was recorded at 10.0% (637.18 ha).
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In this study, it was deduced that the rates estimated for the periods P1 (1990–2000), P2
(2000–2010) and P3 (2010–2020) in the Pomacochas micro-basin presented marked changes
between grassland (increase) and no-grassland (decrease). The changes that were made in
P1 included an increase in grassland (0.87%) and a reduction in no-grassland (−0.58%). In
P2, grassland increased by 1.21% and non-grassland decreased by −0.97%. Similarly, P3
followed the same patterns as P1 and P2, increasing in grassland by 1.93% and declining in
non-grassland by −2.09% (Table 4).

Table 4. Matrix of cross-tabulation, rate of change and indices of changes for grassland and non-
grassland in the Pomacochas micro-watershed during three periods of analysis (area in ha and %).

Period
Year 1

Year 2
Total Year

2 (ha)

Exchange
Rate (s) Loss Total

Change
Net

Change Exchange

(Year
1–Year 2) Grassland No-

Grassland Percentage (%)

1990–2000

Grassland 2042.01 415.02 2457.03 0.87 16.89 42.83 9.05 33.78
No-grassland 637.28 3275.97 3913.25 −0.58 16.29 26.89 5.68 21.21

Total Year 1 (ha) 2679.29 3690.99 6370.28

Gain (%) 25.94 10.61

2000–2010

Grassland 2322.37 356.92 2679.29 1.21 13.32 39.44 12.80 26.64
No-grassland 699.82 2991.17 3690.99 −0.97 18.96 28.63 9.29 19.34

Total Year 1 (ha) 3022.19 3348.09 6370.28

Gain (%) 26.12 9.67

2010–2020

Grassland 2812.93 209.26 3022.19 1.93 6.92 34.93 21.08 13.85
No-grassland 846.45 2501.64 3348.09 −2.09 25.28 31.53 19.03 12.50

Total Year 1 (ha) 3659.38 2710.90 6370.28

Gain (%) 28.01 6.25
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The spatiotemporal dynamics of the grassland and no-grassland classes for the Ventilla
micro-basin showed similar patterns to those of the Pomacochas micro-watershed (Figure 7).
In the last two years of evaluation, the grassland increased in its extension, reducing the
class of no-grassland that could be deduced in the vegetation cover to agricultural uses or
increases in the urban area.
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In this study, it was deduced that the rates estimated for the periods P1 (1990–2000),
P2 (2000–2010) and P3 (2010–2020) presented marked change dynamics between grassland
and no-grassland. The changes that were made in P1 included the increase in grassland
(6.83%) and the reduction in no-grassland (−0.92%). This behavior showed the increase in
grassland with respect to the reduction in non-grassland in the Ventilla micro-watershed.
However, in P2, there was a −0.30% reduction in grassland and a 0.06% increase in no-
grassland. P3 followed the same patterns as P1, increasing by 1.12% and decreasing by
−0.23% for grassland and no-grassland, respectively (Table 5).

Table 5. Matrix of cross-tabulation, rate of change and indices of changes for grassland and non-
grassland in the Ventilla micro-watershed during three periods of analysis (area in ha and %).

Period
Year 1

Year 2
Total Year

2 (ha)

Exchange
Rate (s) Loss Total

Change
Net

Change Exchange

(Year
1–Year 2) Grassland No-

Grassland Percentage (%)

1990–2000

Grassland 1799.53 132.86 1932.39 6.83 6.88 107.38 93.63 13.75
No-grassland 1942.10 18,558.70 20,500.80 −0.92 9.47 10.12 8.83 1.30

Total Year 1 (ha) 3741.63 18,691.56 22,433.19

Gain (%) 100.50 0.65

2000–2010

Grassland 2850.42 891.21 3741.63 −0.30 23.82 44.63 3.00 41.63
No-grassland 778.80 17,912.76 18,691.56 0.06 4.17 8.93 0.60 8.33

Total Year 1 (ha) 3629.22 18,803.97 22,433.19

Gain (%) 20.81 4.77

2010–2020

Pasture 3048.12 581.11 3629.23 1.12 16.01 43.79 11.77 32.02
No-grassland 1008.14 17,795.82 18,803.96 −0.23 5.36 8.45 2.27 6.18

Total Year 1 (ha) 4056.26 18,376.93 22,433.19

Gain (%) 27.78 3.09
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3.3. Evaluation of Changes from Grassland to Non-Grassland by Period

The “grasslands” maintained a greater surface change in the Pomacochas micro-
watershed (net change) (9.05%, 12.80% and 21.08% for P1, P2 and P3, respectively) (Table 4).
With gains in area of 25.94%, 26.12% and 28.01% for P1, P2 and P3, respectively (Figure 8).
Similarly, the “no-grassland” class presented net changes of 5.68, 9.29 and 19.03% in the
three periods, respectively, with losses ranging from 16.29 to 25.28% (Figure 8). This result
could be related to the loss of vegetation cover and land use change as a result of the
opening of new pasture plots within the micro-watershed.
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In the Ventilla micro-watershed, the “grassland” class presented the greatest surface
change (net change) (93.63%, 3% and 11.77% for P1, P2 and P3, respectively)) (Table 5),
with gains in area of 100.5%, 20.81% and 27.78% for P1, P2 and P3, respectively (Figure 9).
However, the “no-grassland” class presented net changes of 8.83%, 0.60% and 2.27% for the
periods of analyses P1, P2 and P3, respectively. In turn, the loss of grassland area ranged
from −4.17 to −9.47%. Indeed, this reduction in the grassland class could be due to the
transition from livestock to agricultural activities within the micro-watershed.
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Figure 10 shows the changes produced according to the spatiotemporal analysis for
each micro-watershed. Therefore, the changes produced in the non-grassland are colored
orange and the changes in the grasslands are colored in red, showing a gradual increase in
the use of grasslands in both micro-watersheds from 1990 to 2020.

1 
 

 

Figure 10. Maps of the processes of change and stability that occurred between 1990–2000, 2000–2010
and 2010–2020 in the micro-watersheds of Pomacochas and Ventilla.

4. Discussion

The thematic accuracy of the generated maps presented acceptable precision values;
in particular, they indicated that the applied methodology is capable of generating compa-
rable maps presenting spatial and temporal coherence. However, Parente and Ferreira [25]
considered that the generated maps were subject to errors of commission and omission.
In our study, commission errors were minimized through the application of vegetation
indices. The NDVI is an index that can assess changes in vegetation cover [79–81] and
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chlorophyll concentration in plant leaves [82]. However, an inadequate use of NDVI carries
inherent risks related to aspects of: atmospheric effect, saturation phenomenon and factors
of the sensor used [83]. In this study, the additional use of SAVI and EVI were consid-
ered for the spatiotemporal analysis of grassland. In addition, the use of masks for water
bodies, clouds and cloud shadows [42,64,66,68,69] were used to eliminate misclassified
pixels. Additionally, the errors of omission were related to the spatial resolution, where the
grassland class was underestimated with other land uses (no-grassland), such as agricul-
ture [25]. In addition, to obtain the land use and cover maps for a specific year considering
all available images, it was decided to use surface reflectance data from Landsat 5, 7 and
8 (https://developers.google.com/earth-engine/datasets/catalog/landsat, accessed on
18 November 2021), available in GEE, but not MODIS [84] and/or AVHRR [85] data, due
to their low spatial resolution, which is limited for evaluating small areas [86]. Therefore,
Landsat images were used because of the spatial and temporal resolution available.

The results generated in this study reported two important periods in terms of the
increase in grasslands in the Pomacochas and Ventilla micro-watersheds. Between 1990
and 2000, a process of occupation of the territory was generated, and this result was
supported by the opening of new grazing areas, as a result of forests’ clearance and
migratory movements of inhabitants from the regions of San Martín and Cajamarca [87,88].
From 2010 to 2020, livestock activity intensified in both micro-watersheds, which increased
the production and carrying capacity per ha, which was corroborated by the reports of
Oliva et al. [89] on the increase of the number of ranchers in the Pomacochas (773 ranchers)
and Ventilla (1131 ranchers) micro-watersheds.

Grasslands are important in animal feeding and are the most economical food source
for ruminants, which forces researchers to look for highly nutritious, digestible forage
species with high biomass yields [48]. In this sense, the prevalence of grasslands for the
Pomacochas and Ventilla micro-watersheds is reflected in a gain of 28.01% and 27.78%,
respectively, for the 2010–2020 period (Figures 8 and 9). This is related to market demand,
infrastructure aspects and productive needs of the region and population [90,91]. In
this context, rangelands are still vulnerable to the processes of urbanization, industrial
development, intensive management practices and effects of climate change [92–94].

Thirty-nine percent of grasslands worldwide experience degradation due to frequent
anthropogenic activity [95]. These human activities, together with unfavorable environ-
mental conditions, are the main causes of changes in the productivity of rangelands and an
increase in carbon emissions [20,96]. In the study area, degraded pastures were located in
areas close to urbanized land (city and roads). Among the possible causes of degradation
are the installation of crops (maize, tubers and Andean crops), overgrazing [97] and poor
livestock practices and lack of programs for the recovery of degraded areas. In Peru, agri-
culture has replaced the Jalca, especially in the Andean zones [98] this is reflected in the
dynamics of the land use and cover for the Pomacochas and Ventilla micro-watersheds.

The monitoring of grasslands through remote sensing allows us to know the current
state of the grassland and the physical conditions of the climate, soil and human activ-
ities [20]. In recent years, new remote sensing technologies, such as GEE, radar images
and the use of Remotely Piloted Aircraft System (RPAS) equipped with hyperspectral
cameras and machine learning algorithms, have allowed more accurate predictions of
grassland quality. Grassland mapping allows distinguishing different grassland ecologies
that influence management practices, degradation and productivity over time [99–101]. In
our study, multitemporal images were analyzed that allowed us to monitor the dynamics
of the grasslands in the study area, reporting consistent accuracies and demonstrating the
increase in the grasslands in both micro-watersheds. In fact, this study lays the ground-
work for subsequent studies: evaluation of grassland degradation through satellite remote
sensing and/or RPAS, recovery plans for degraded areas and management programs for
silvopastoral systems, among others.

https://developers.google.com/earth-engine/datasets/catalog/landsat
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5. Conclusions

In this study, a semi-automated methodological approach for Landsat image pro-
cessing using GEE was applied during three periods from 1990 to 2020 to evaluate the
spatiotemporal dynamics of grasslands in two main cattle micro-watersheds in Amazonas
region. The interannual maps reported accuracies higher than 0.85 (85%), with areas rang-
ing from 2457.03 to 3659.37 ha for Pomacochas and from 1932.38 to 4056.26 ha for Ventilla.
The analysis of the maps revealed a strong increase in pasture area during the third period
(2010–2020) and showed a pattern of increase in the cattle herd due to the conversion and
opening of new pasture areas. The assessment of rangeland dynamics presented in this
study can be promoted as a management tool to identify rangelands and design strategies
for sustainable cattle farming.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/land11050674/s1, Table S1: User precision error and producer precision error for the
Pomacochas micro-watershed, Table S2: User precision error and producer precision error for the
Ventilla micro-watershed.
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